ﻻ يوجد ملخص باللغة العربية
The primary attribute of interest of surface nanobubbles is their unusual stability and a number of theories trying to explain this have been put forward. Interestingly, the dissolution of nanobubbles is a topic that did not receive a lot of attention yet. In this work we applied two different experimental procedures which should cause gaseous nanobubbles to completely dissolve. In our experiments we nucleated nanobubble-like objects by putting a drop of water on HOPG using a plastic syringe and disposable needle. In method A, the nanobubble-like objects were exposed to a flow of degassed water (1.17 mg/l) for 96 hours. In method B, the ambient pressure was lowered in order to degas the liquid and the nanobubble-like objects. Interestingly, the nanobubble-like objects remained stable after exposure to both methods. After thorough investigation of the procedures and materials used during our experiments, we found that the nanobubble-like object were induced by the use of disposable needles in which PDMS contaminated the water. It is very important for the nanobubble community to be aware of the fact that, although features look and behave like nanobubbles, in some cases they might in fact be or induced by contamination. The presence of contamination could also resolve some inconsistencies found in the nanobubble literature.
Using molecular dynamics, we study the nucleation and stability of bulk nanobubble clusters. We study the formation, growth, and final size of bulk nanobubbles. We find that, as long as the bubble-bubble interspacing is small enough, bulk nanobubbles
A fluid droplet located on a super-hydrophobic surface makes contact with the surface only at small isolated regions, and is mostly in contact with the surrounding air. As a result, a fluid in motion near such a surface experiences very low friction,
Micro and nanodroplets have many important applications such as in drug delivery, liquid-liquid extraction, nanomaterial synthesis and cosmetics. A commonly used method to generate a large number of micro or nanodroplets in one simple step is solvent
The viscous drag on a slender rod by a wall is important to many biological and industrial systems. This drag critically depends on the separation between the rod and the wall and can be approximated asymptotically in specific regimes, namely far fro
In this article, we describe the instability of a contact line under nonequilibrium conditions mainly based on the results of our recent studies. Two experimental examples are presented: the self-propelled motion of a liquid droplet and spontaneous d