ﻻ يوجد ملخص باللغة العربية
The divide and conquer method is a common strategy for handling massive data. In this article, we study the divide and conquer method for cubic-rate estimators under the massive data framework. We develop a general theory for establishing the asymptotic distribution of the aggregated M-estimators using a simple average. Under certain condition on the growing rate of the number of subgroups, the resulting aggregated estimators are shown to have faster convergence rate and asymptotic normal distribution, which are more tractable in both computation and inference than the original M-estimators based on pooled data. Our theory applies to a wide class of M-estimators with cube root convergence rate, including the location estimator, maximum score estimator and value search estimator. Empirical performance via simulations also validate our theoretical findings.
We investigate two important properties of M-estimator, namely, robustness and tractability, in linear regression setting, when the observations are contaminated by some arbitrary outliers. Specifically, robustness means the statistical property that
Robust estimators of large covariance matrices are considered, comprising regularized (linear shrinkage) modifications of Maronnas classical M-estimators. These estimators provide robustness to outliers, while simultaneously being well-defined when t
This paper considers distributed statistical inference for general symmetric statistics %that encompasses the U-statistics and the M-estimators in the context of massive data where the data can be stored at multiple platforms in different locations.
In the Gaussian white noise model, we study the estimation of an unknown multidimensional function $f$ in the uniform norm by using kernel methods. The performances of procedures are measured by using the maxiset point of view: we determine the set o
We discuss the possibilities and limitations of estimating the mean of a real-valued random variable from independent and identically distributed observations from a non-asymptotic point of view. In particular, we define estimators with a sub-Gaussia