ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-dimensional behavior of regularized Maronnas M-estimators of covariance matrices

106   0   0.0 ( 0 )
 نشر من قبل Nicolas Auguin
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Robust estimators of large covariance matrices are considered, comprising regularized (linear shrinkage) modifications of Maronnas classical M-estimators. These estimators provide robustness to outliers, while simultaneously being well-defined when the number of samples does not exceed the number of variables. By applying tools from random matrix theory, we characterize the asymptotic performance of such estimators when the numbers of samples and variables grow large together. In particular, our results show that, when outliers are absent, many estimators of the regularized-Maronna type share the same asymptotic performance, and for these estimators we present a data-driven method for choosing the asymptotically optimal regularization parameter with respect to a quadratic loss. Robustness in the presence of outliers is then studied: in the non-regularized case, a large-dimensional robustness metric is proposed, and explicitly computed for two particular types of estimators, exhibiting interesting differences depending on the underlying contamination model. The impact of outliers in regularized estimators is then studied, with interesting differences with respect to the non-regularized case, leading to new practical insights on the choice of particular estimators.



قيم البحث

اقرأ أيضاً

A large dimensional characterization of robust M-estimators of covariance (or scatter) is provided under the assumption that the dataset comprises independent (essentially Gaussian) legitimate samples as well as arbitrary deterministic samples, refer red to as outliers. Building upon recent random matrix advances in the area of robust statistics, we specifically show that the so-called Maronna M-estimator of scatter asymptotically behaves similar to well-known random matrices when the population and sample sizes grow together to infinity. The introduction of outliers leads the robust estimator to behave asymptotically as the weighted sum of the sample outer products, with a constant weight for all legitimate samples and different weights for the outliers. A fine analysis of this structure reveals importantly that the propensity of the M-estimator to attenuate (or enhance) the impact of outliers is mostly dictated by the alignment of the outliers with the inverse population covariance matrix of the legitimate samples. Thus, robust M-estimators can bring substantial benefits over more simplistic estimators such as the per-sample normalized version of the sample covariance matrix, which is not capable of differentiating the outlying samples. The analysis shows that, within the class of Maronnas estimators of scatter, the Huber estimator is most favorable for rejecting outliers. On the contrary, estimators more similar to Tylers scale invariant estimator (often preferred in the literature) run the risk of inadvertently enhancing some outliers.
Let $mathbf{X}_n=(x_{ij})$ be a $k times n$ data matrix with complex-valued, independent and standardized entries satisfying a Lindeberg-type moment condition. We consider simultaneously $R$ sample covariance matrices $mathbf{B}_{nr}=frac1n mathbf{Q} _r mathbf{X}_n mathbf{X}_n^*mathbf{Q}_r^top,~1le rle R$, where the $mathbf{Q}_{r}$s are nonrandom real matrices with common dimensions $ptimes k~(kgeq p)$. Assuming that both the dimension $p$ and the sample size $n$ grow to infinity, the limiting distributions of the eigenvalues of the matrices ${mathbf{B}_{nr}}$ are identified, and as the main result of the paper, we establish a joint central limit theorem for linear spectral statistics of the $R$ matrices ${mathbf{B}_{nr}}$. Next, this new CLT is applied to the problem of testing a high dimensional white noise in time series modelling. In experiments the derived test has a controlled size and is significantly faster than the classical permutation test, though it does have lower power. This application highlights the necessity of such joint CLT in the presence of several dependent sample covariance matrices. In contrast, all the existing works on CLT for linear spectral statistics of large sample covariance matrices deal with a single sample covariance matrix ($R=1$).
We consider general high-dimensional spiked sample covariance models and show that their leading sample spiked eigenvalues and their linear spectral statistics are asymptotically independent when the sample size and dimension are proportional to each other. As a byproduct, we also establish the central limit theorem of the leading sample spiked eigenvalues by removing the block diagonal assumption on the population covariance matrix, which is commonly needed in the literature. Moreover, we propose consistent estimators of the $L_4$ norm of the spiked population eigenvectors. Based on these results, we develop a new statistic to test the equality of two spiked population covariance matrices. Numerical studies show that the new test procedure is more powerful than some existing methods.
Covariance matrix testing for high dimensional data is a fundamental problem. A large class of covariance test statistics based on certain averaged spectral statistics of the sample covariance matrix are known to obey central limit theorems under the null. However, precise understanding for the power behavior of the corresponding tests under general alternatives remains largely unknown. This paper develops a general method for analyzing the power behavior of covariance test statistics via accurate non-asymptotic power expansions. We specialize our general method to two prototypical settings of testing identity and sphericity, and derive sharp power expansion for a number of widely used tests, including the likelihood ratio tests, Ledoit-Nagao-Wolfs test, Cai-Mas test and Johns test. The power expansion for each of those tests holds uniformly over all possible alternatives under mild growth conditions on the dimension-to-sample ratio. Interestingly, although some of those tests are previously known to share the same limiting power behavior under spiked covariance alternatives with a fixed number of spikes, our new power characterizations indicate that such equivalence fails when many spikes exist. The proofs of our results combine techniques from Poincare-type inequalities, random matrices and zonal polynomials.
227 - Qinwen Wang , Jianfeng Yao 2015
Consider two $p$-variate populations, not necessarily Gaussian, with covariance matrices $Sigma_1$ and $Sigma_2$, respectively, and let $S_1$ and $S_2$ be the sample covariances matrices from samples of the populations with degrees of freedom $T$ and $n$, respectively. When the difference $Delta$ between $Sigma_1$ and $Sigma_2$ is of small rank compared to $p,T$ and $n$, the Fisher matrix $F=S_2^{-1}S_1$ is called a {em spiked Fisher matrix}. When $p,T$ and $n$ grow to infinity proportionally, we establish a phase transition for the extreme eigenvalues of $F$: when the eigenvalues of $Delta$ ({em spikes}) are above (or under) a critical value, the associated extreme eigenvalues of the Fisher matrix will converge to some point outside the support of the global limit (LSD) of other eigenvalues; otherwise, they will converge to the edge points of the LSD. Furthermore, we derive central limit theorems for these extreme eigenvalues of the spiked Fisher matrix. The limiting distributions are found to be Gaussian if and only if the corresponding population spike eigenvalues in $Delta$ are {em simple}. Numerical examples are provided to demonstrate the finite sample performance of the results. In addition to classical applications of a Fisher matrix in high-dimensional data analysis, we propose a new method for the detection of signals allowing an arbitrary covariance structure of the noise. Simulation experiments are conducted to illustrate the performance of this detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا