ﻻ يوجد ملخص باللغة العربية
We develop an effective field theory (EFT) to describe the few- and many-body propagation of one dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a non-equilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong effective $N$-body interactions between Rydberg polaritons. These results pave the way towards studying non-perturbative effects in quantum field theories using Rydberg polaritons.
We theoretically demonstrate coherent control over propagation of surface plasmon polaritons(SPP), at both telecommunication and visible wavelengths, on a metallic surface adjacent to quantum coherence (phaseonium) medium composed of three-level quan
We present a scheme for the nondestructive and ultra-sensitive imaging of Rydberg atoms within an ensemble of cold probe atoms. This is made possible by the interaction-enhanced electromagnetically induced transparency at off-resonance which enables
A detailed theoretical framework for highly excited Rydberg molecules is developed based on the generalized local frame transformation. Our approach avoids the use of pseudopotentials and yields analytical expressions for the body-frame reaction matr
An ensemble of excited atoms can synchronize emission of light collectively in a process known as superradiance when its characteristic size is smaller than the wavelength of emitted photons. The underlying superradiance depends strongly on electroma
We discuss shallow resonances in the nonrelativistic scattering of two particles using an effective field theory (EFT) that includes an auxiliary field with the quantum numbers of the resonance. We construct the manifestly renormalized scattering amp