ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-resolution Rydberg imaging reaching the nanoscale

121   0   0.0 ( 0 )
 نشر من قبل Jing Qian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a scheme for the nondestructive and ultra-sensitive imaging of Rydberg atoms within an ensemble of cold probe atoms. This is made possible by the interaction-enhanced electromagnetically induced transparency at off-resonance which enables an extremely narrow zero-absorption window for an enhanced 100$%$ transmission. By probing the transmission rate we obtain the distribution of Rydberg atoms with both ultra-high spatial resolution and fast response, ensuring a precise real-time imaging. Increased resolution compared to previous work allows us to accurately obtain the information of atom position at the nanometer scale via adjusting the probe detuning only. This new type of interaction enhanced transmission imaging can be utilized to other impure systems containing strong many-body interactions, and is promising to develop nanoscale super-resolution microscopy.



قيم البحث

اقرأ أيضاً

We describe the measurement of the secular motion of a levitated nanoparticle in a Paul trap with a CMOS camera. This simple method enables us to reach signal-to-noise ratios as good as 10$^{6}$ with a displacement sensitivity better than 10$^{-16},m ^{2}$/Hz. This method can be used to extract trap parameters as well as the properties of the levitated particles. We demonstrate continuous monitoring of the particle dynamics on timescales of the order of weeks. We show that by using the improvement given by super-resolution imaging, a significant reduction in the noise floor can be attained, with an increase in the bandwidth of the force sensitivity. This approach represents a competitive alternative to standard optical detection for a range of low frequency oscillators where low optical powers are required
We develop an effective field theory (EFT) to describe the few- and many-body propagation of one dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a no n-equilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong effective $N$-body interactions between Rydberg polaritons. These results pave the way towards studying non-perturbative effects in quantum field theories using Rydberg polaritons.
An ensemble of excited atoms can synchronize emission of light collectively in a process known as superradiance when its characteristic size is smaller than the wavelength of emitted photons. The underlying superradiance depends strongly on electroma gnetic (photon) fields surrounding the atomic ensemble. High mode densities of microwave photons from $300,$K blackbody radiation (BBR) significantly enhance decay rates of Rydberg states to neighbouring states, enabling superradiance that is not possible with bare vacuum induced spontaneous decay. Here we report observations of the superradiance of ultracold Rydberg atoms embedded in a bath of room-temperature photons. The temporal evolution of the Rydberg $|nDrangle$ to $|(n+1)Prangle$ superradiant decay of Cs atoms ($n$ the principal quantum number) is measured directly in free space. Theoretical simulations confirm the BBR enhanced superradiance in large Rydberg ensembles. We demonstrate that the van der Waals interactions between Rydberg atoms change the superradiant dynamics and modify the scaling of the superradiance. In the presence of static electric fields, we find that the superradiance becomes slow, potentially due to many-body interaction induced dephasing. Our study provides insights into many-body dynamics of interacting atoms coupled to thermal BBR, and might open a route to the design of blackbody thermometry at microwave frequencies via collective, dissipative photon-atom interactions.
Single-photon light detection and ranging (LiDAR), offering single-photon sensitivity and picosecond time resolution, has been widely adopted for active imaging applications. Long-range active imaging is a great challenge, because the spatial resolut ion degrades significantly with the imaging range due to the diffraction limit of the optics, and only weak echo signal photons can return but mixed with a strong background noise. Here we propose and demonstrate a photon-efficient LiDAR approach that can achieve sub-Rayleigh resolution imaging over long ranges. This approach exploits fine sub-pixel scanning and a deconvolution algorithm tailored to this long-range application. Using this approach, we experimentally demonstrated active three-dimensional (3D) single-photon imaging by recognizing different postures of a mannequin model at a stand-off distance of 8.2 km in both daylight and night. The observed spatial (transversal) resolution is about 5.5 cm at 8.2 km, which is about twice of the systems resolution. This also beats the optical systems Rayleigh criterion. The results are valuable for geosciences and target recognition over long ranges.
Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the- art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate --- hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (approx. 2--5 GSa/s) --- more than four times lower than the originally required readout rate (20 GSa/s) --- is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time- stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا