ﻻ يوجد ملخص باللغة العربية
We consider an SIR-type (Susceptible $to$ Infected $to$ Recovered) stochastic epidemic process with multiple modes of transmission on a contact network. The network is given by a random graph following a multilayer configuration model where edges in different layers correspond to potentially infectious contacts of different types. We assume that the graph structure evolves in response to the epidemic via activation or deactivation of edges. We derive a large graph limit theorem that gives a system of ordinary differential equations (ODEs) describing the evolution of quantities of interest, such as the proportions of infected and susceptible vertices, as the number of nodes tends to infinity. Analysis of the limiting system elucidates how the coupling of edge activation and deactivation to infection status affects disease dynamics, as illustrated by a two-layer network example with edge types corresponding to community and healthcare contacts. Our theorem extends some earlier results deriving the deterministic limit of stochastic SIR processes on static, single-layer configuration model graphs. We also describe precisely the conditions for equivalence between our limiting ODEs and the systems obtained via pair approximation, which are widely used in the epidemiological and ecological literature to approximate disease dynamics on networks. Potential applications include modeling Ebola dynamics in West Africa, which was the motivation for this study.
Using particle system methodologies we study the propagation of financial distress in a network of firms facing credit risk. We investigate the phenomenon of a credit crisis and quantify the losses that a bank may suffer in a large credit portfolio.
The spread of an epidemic process is considered in the context of a spatial SIR stochastic model that includes a parameter $0le ple 1$ that assigns weights $p$ and $1- p$ to global and local infective contacts respectively. The model was previously s
We study the stochastic susceptible-infected-recovered (SIR) model with time-dependent forcing using analytic techniques which allow us to disentangle the interaction of stochasticity and external forcing. The model is formulated as a continuous time
We present a method for estimating epidemic parameters in network-based stochastic epidemic models when the total number of infections is assumed to be small. We illustrate the method by reanalyzing the data from the 2014 Democratic Republic of the C
In late December 2019, a novel strand of Coronavirus (SARS-CoV-2) causing a severe, potentially fatal respiratory syndrome (COVID-19) was identified in Wuhan, Hubei Province, China and is causing outbreaks in multiple world countries, soon becoming a