ﻻ يوجد ملخص باللغة العربية
We study the stochastic susceptible-infected-recovered (SIR) model with time-dependent forcing using analytic techniques which allow us to disentangle the interaction of stochasticity and external forcing. The model is formulated as a continuous time Markov process, which is decomposed into a deterministic dynamics together with stochastic corrections, by using an expansion in inverse system size. The forcing induces a limit cycle in the deterministic dynamics, and a complete analysis of the fluctuations about this time-dependent solution is given. This analysis is applied when the limit cycle is annual, and after a period-doubling when it is biennial. The comprehensive nature of our approach allows us to give a coherent picture of the dynamics which unifies past work, but which also provides a systematic method for predicting the periods of oscillations seen in whooping cough and measles epidemics.
Between pandemics, the influenza virus exhibits periods of incremental evolution via a process known as antigenic drift. This process gives rise to a sequence of strains of the pathogen that are continuously replaced by newer strains, preventing a bu
Pairwise models are used widely to model epidemic spread on networks. These include the modelling of susceptible-infected-removed (SIR) epidemics on regular networks and extensions to SIS dynamics and contact tracing on more exotic networks exhibitin
The spread of an epidemic process is considered in the context of a spatial SIR stochastic model that includes a parameter $0le ple 1$ that assigns weights $p$ and $1- p$ to global and local infective contacts respectively. The model was previously s
A pandemic caused by a new coronavirus (COVID-19) has spread worldwide, inducing an epidemic still active in Argentina. In this chapter, we present a case study using an SEIR (Susceptible-Exposed-Infected-Recovered) diffusion model of fractional orde
We consider an SIR-type (Susceptible $to$ Infected $to$ Recovered) stochastic epidemic process with multiple modes of transmission on a contact network. The network is given by a random graph following a multilayer configuration model where edges in