ﻻ يوجد ملخص باللغة العربية
The interaction of charged particles and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multi-photon nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude $a_0 sim 10^3$ and electron bunches with charges of the order of 10 nC.
We consider the absorption of probe photons by electrons in the presence of an intense, pulsed, background field. Our analysis reveals an interplay between regularisation and gauge invariance which distinguishes absorption from its crossing-symmetric
Intense-field ionization of the hydrogen molecular ion by linearly-polarized light is modelled by direct solution of the fixed-nuclei time-dependent Schrodinger equation and compared with recent experiments. Parallel transitions are calculated using
Radiative and non-radiative electron spin flip probabilities are analysed in both plane wave and focussed laser backgrounds. We provide a simple and physically transparent description of spin dynamics in plane waves, and demonstrate that there exists
We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parame
We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nano