ﻻ يوجد ملخص باللغة العربية
We embark on investigating the magneto-optical absorption in {em spherical} quantum dots {em completely} confined by a harmonic potential and exposed to an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines RPA that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. Intensifying the confinement or magnetic field and reducing the dot-size yields a blue-shift in the absorption peaks. However, the size effects are seen to be predominant in this role. The magnetic field tends to maximize the localization of the particle, but leaves the peak position of the radial distribution intact. The intra-Landau level transitions are forbidden.
Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting {em spherical} quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the f
A deeper sense of advantages over the planar quantum dots and the foreseen applications in the single-electron devices and quantum computation have given vertically stacked quantum dots (VSQD) a width of interest. Here, we embark on the collective ex
The magnetic field dependence of the excitonic states in unstrained GaAs/AlGaAs quantum dots is investigated theoretically and experimentally. The diamagnetic shift for the ground and the excited states are studied in magnetic fields of varying orien
Using a combination of continuous wave and time-resolved spectroscopy, we study the effects of interfacial conditions on the radiative lifetimes and photoluminescence intensities of colloidal CdTe/CdS quantum dots (QDs) embedded in a three-dimensiona
We present a detailed investigation into the optical characteristics of individual InAs quantum dots (QDs) grown by metalorganic chemical vapor deposition, with low temperature emission in the telecoms window around 1300 nm. Using micro-photoluminesc