ترغب بنشر مسار تعليمي؟ اضغط هنا

High-field magneto-excitons in unstrained GaAs/AlGaAs quantum dots

64   0   0.0 ( 0 )
 نشر من قبل Yosyp Sidor
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic field dependence of the excitonic states in unstrained GaAs/AlGaAs quantum dots is investigated theoretically and experimentally. The diamagnetic shift for the ground and the excited states are studied in magnetic fields of varying orientation. In the theoretical study, calculations are performed within the single band effective mass approximation, including band nonparabolicity, the full experimental three-dimensional dot shape and the electron-hole Coulomb interaction. These calculations are compared with the experimental results for both the ground and the excited states in fields up to 50 Tesla. Good agreement is found between theory and experiment.



قيم البحث

اقرأ أيضاً

Strong increase in the intensity of the peaks of excited magneto-exciton (ME) states in the photoluminescence excitation (PLE) spectra recorded for the ground heavy-hole magneto-excitons (of the 1sHH type) has been found in a GaAs/AlGaAs superlattice in strong magnetic field B applied normal to the sample layers. While varying B the intensities of the PLE peaks have been measured as functions of energy separation $Delta E$ between excited ME peaks and the ground state of the system. The resonance profiles have been found to have maxima at $Delta E_{rm max}$ close to the energy of the GaAs LO-phonon. However, the value of $Delta E_{rm max}$ depends on quantum numbers of the excited ME state. The revealed very low quantum efficiency of the investigated sample allows us to ascribe the observed resonance to the enhancement of the non-radiative magneto-exciton relaxation rate arising due to LO-phonon emission. The presented theoretical model, being in a good agreement with experimental observations, provides a method to extract 1sHH magneto-exciton ``in-plane dispersion from the dependence of $Delta E_{rm max}$ on the excited ME state quantum numbers.
131 - X. Fu , Q. Shi , M. A. Zudov 2019
We report on quantum Hall stripes (QHSs) formed in higher Landau levels of GaAs/AlGaAs quantum wells with high carrier density ($n_e > 4 times 10^{11}$ cm$^{-2}$) which is expected to favor QHS orientation along unconventional $left < 1bar{1}0 right >$ crystal axis and along the in-plane magnetic field $B_{||}$. Surprisingly, we find that at $B_{||} = 0$ QHSs in our samples are aligned along $left < 110 right >$ direction and can be reoriented only perpendicular to $B_{||}$. These findings suggest that high density alone is not a decisive factor for either abnormal native QHS orientation or alignment with respect to $B_{||}$, while quantum confinement of the 2DEG likely plays an important role.
We report quantum dots fabricated on very shallow 2-dimensional electron gases, only 30 nm below the surface, in undoped GaAs/AlGaAs heterostructures grown by molecular beam epitaxy. Due to the absence of dopants, an improvement of more than one orde r of magnitude in mobility (at 2E11 /cm^2) with respect to doped heterostructures with similar depths is observed. These undoped wafers can easily be gated with surface metallic gates patterned by e-beam lithography, as demonstrated here from single-level transport through a quantum dot showing large charging energies (up to 1.75 meV) and excited state energies (up to 0.5 meV).
Dynamics of nonradiative excitons with large in-plane wave vectors forming a so-called reservoir is experimentally studied in a high-quality semiconductor structure containing a 14-nm shallow GaAs/Al$_{0.03}$Ga$_{0.97}$As quantum well by means of the non-degenerate pump-probe spectroscopy. The exciton dynamics is visualized via the dynamic broadening of the heavy-hole and light-hole exciton resonances caused by the exciton-exciton scattering. Under the non-resonant excitation free carriers are optically generated. In this regime the exciton dynamics is strongly affected by the exciton-carrier scattering. In particular, if the carriers of one sign are prevailing, they efficiently deplete the reservoir of the nonradiative excitons inducing their scattering into the light cone. A simple model of the exciton dynamics is developed, which considers the energy relaxation of photocreated electrons and holes, their coupling into excitons, and exciton scattering into the light cone. The model well reproduces the exciton dynamics observed experimentally both at the resonant and nonresonant excitation. Moreover, it correctly describes the profiles of the photoluminescence pulses studied experimentally. The efficient exciton-electron interaction is further experimentally verified by the control of the exciton density in the reservoir when an additional excitation creates electrons depleting the reservoir.
Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC reach es 99% and beyond, it has been limited to 60-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent dark nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed - the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا