ﻻ يوجد ملخص باللغة العربية
We construct four kinds of Z3-symmetric three-dimentional (3-d) Potts models, each with different number of states at each site on a 3-d lattice, by extending the 3-d three-state Potts model. Comparing the ordinary Potts model with the four Z3-symmetric Potts models, we investigate how Z3 symmetry affects the sign problem and see how the deconfinement transition line changes in the $mu-kappa$ plane as the number of states increases, where $mu$ $(kappa)$ plays a role of chemical potential (temperature) in the models. We find that the sign problem is almost cured by imposing Z3 symmetry. This mechanism may happen in Z3-symmetric QCD-like theory. We also show that the deconfinement transition line has stronger $mu$-dependence with respect to increasing the number of states.
As an effective model corresponding to $Z_3$-symmetric QCD ($Z_3$-QCD), we construct a $Z_3$-symmetric effective Polyakov-line model ($Z_3$-EPLM) by using the logarithmic fermion effective action. Since $Z_3$-QCD tends to QCD in the zero temperature
This an English translation of a review of finite-density lattice QCD. The original version in Japanese appeared in Soryushiron Kenkyu Vol 31 (2020) No. 1.
We discuss the sign problem in the Polyakov loop extended Nambu--Jona-Lasinio model with repulsive vector-type interaction by using the path optimization method. In this model, both of the Polyakov loop and the vector-type interaction cause the model
The path optimization method is applied to a QCD effective model with the Polyakov loop and the repulsive vector-type interaction at finite temperature and density to circumvent the model sign problem. We show how the path optimization method can inc
In a lattice gauge-Higgs unification scenario using a Z_2-orbifolded extra-dimension, we find a new global symmetry in a case of SU(2) bulk gauge symmetry. It is a global symmetry on sites in a fixed point with respect to Z_2-orbifolding, independent