ﻻ يوجد ملخص باللغة العربية
The combinatorics of squares in a word depends on how the equivalence of halves of the square is defined. We consider Abelian squares, parameterized squares, and order-preserving squares. The word $uv$ is an Abelian (parameterized, order-preserving) square if $u$ and $v$ are equivalent in the Abelian (parameterized, order-preserving) sense. The maximum number of ordinary squares in a word is known to be asymptotically linear, but the exact bound is still investigated. We present several results on the maximum number of distinct squares for nonstandard subword equivalence relations. Let $mathit{SQ}_{mathrm{Abel}}(n,sigma)$ and $mathit{SQ}_{mathrm{Abel}}(n,sigma)$ denote the maximum number of Abelian squares in a word of length $n$ over an alphabet of size $sigma$, which are distinct as words and which are nonequivalent in the Abelian sense, respectively. For $sigmage 2$ we prove that $mathit{SQ}_{mathrm{Abel}}(n,sigma)=Theta(n^2)$, $mathit{SQ}_{mathrm{Abel}}(n,sigma)=Omega(n^{3/2})$ and $mathit{SQ}_{mathrm{Abel}}(n,sigma) = O(n^{11/6})$. We also give linear bounds for parameterized and order-preserving squares for alphabets of constant size: $mathit{SQ}_{mathrm{param}}(n,O(1))=Theta(n)$, $mathit{SQ}_{mathrm{op}}(n,O(1))=Theta(n)$. The upper bounds have quadratic dependence on the alphabet size for order-preserving squares and exponential dependence for parameterized squares. As a side result we construct infinite words over the smallest alphabet which avoid nontrivial order-preserving squares and nontrivial parameterized cubes (nontrivial parameterized squares cannot be avoided in an infinite word).
For $n > 2k geq 4$ we consider intersecting families $mathcal F$ consisting of $k$-subsets of ${1, 2, ldots, n}$. Let $mathcal I(mathcal F)$ denote the family of all distinct intersections $F cap F$, $F eq F$ and $F, Fin mathcal F$. Let $mathcal A$
In this note we describe a new method of counting the number of unordered factorizations of a natural number by means of a generating function and a recurrence relation arising from it, which improves an earlier result in this direction.
A multi-relational graph maintains two or more relations over a vertex set. This article defines an algebra for traversing such graphs that is based on an $n$-ary relational algebra, a concatenative single-relational path algebra, and a tensor-based
We consider relations with no order on their attributes as in Database Theory. An independent partition of the set of attributes S of a finite relation R is any partition X of S such that the join of the projections of R over the elements of X yields
We present a new aperiodic tileset containing 11 Wang tiles on 4 colors, and we show that this tileset is minimal, in the sense that no Wang set with either fewer than 11 tiles or fewer than 4 colors is aperiodic. This gives a definitive answer to the problem raised by Wang in 1961.