ﻻ يوجد ملخص باللغة العربية
The SDN and NFV paradigms enable novel network services which can be realized and embedded in a flexible and rapid manner. For example, SDN can be used to flexibly steer traffic from a source to a destination through a sequence of virtualized middleboxes, in order to realize so-called service chains. The service chain embedding problem consists of three tasks: admission control, finding suitable locations to allocate the virtualized middleboxes and computing corresponding routing paths. This paper considers the offline batch embedding of multiple service chains. Concretely, we consider the objectives of maximizing the profit by embedding an optimal subset of requests or minimizing the costs when all requests need to be embedded. Interestingly, while the service chain embedding problem has recently received much attention, so far, only non- polynomial time algorithms (based on integer programming) as well as heuristics (which do not provide any formal guarantees) are known. This paper presents the first polynomial time service chain approximation algorithms both for the case with admission and without admission control. Our algorithm is based on a novel extension of the classic linear programming and randomized rounding technique, which may be of independent interest. In particular, we show that our approach can also be extended to more complex service graphs, containing cycles or sub-chains, hence also providing new insights into the classic virtual network embedding problem.
Network virtualization provides a promising solution to overcome the ossification of current networks, allowing multiple Virtual Network Requests (VNRs) embedded on a common infrastructure. The major challenge in network virtualization is the Virtual
Software Defined Networking and Network Function Virtualization are two paradigms that offer flexible software-based network management. Service providers are instantiating Virtualized Network Functions - e.g., firewalls, DPIs, gateways - to highly f
The performance of distributed and data-centric applications often critically depends on the interconnecting network. Applications are hence modeled as virtual networks, also accounting for resource demands on links. At the heart of provisioning such
We present and analyze a simple, two-step algorithm to approximate the optimal solution of the sparse PCA problem. Our approach first solves a L1 penalized version of the NP-hard sparse PCA optimization problem and then uses a randomized rounding str
Network Functions Virtualization (NFV) allows implantation of network functions to be independent of dedicated hardware devices. Any series of services can be represented by a service function chain which contains a set of virtualized network functio