ﻻ يوجد ملخص باللغة العربية
Network virtualization provides a promising solution to overcome the ossification of current networks, allowing multiple Virtual Network Requests (VNRs) embedded on a common infrastructure. The major challenge in network virtualization is the Virtual Network Embedding (VNE) problem, which is to embed VNRs onto a shared substrate network and known to be $mathcal{NP}$-hard. The topological heterogeneity of VNRs is one important factor hampering the performance of the VNE. However, in many specialized applications and infrastructures, VNRs are of some common structural features $textit{e.g.}$, paths and cycles. To achieve better outcomes, it is thus critical to design dedicated algorithms for these applications and infrastructures by taking into accounting topological characteristics. Besides, paths and cycles are two of the most fundamental topologies that all network structures consist of. Exploiting the characteristics of path and cycle embeddings is vital to tackle the general VNE problem. In this paper, we investigated the path and cycle embedding problems. For path embedding, we proved its $mathcal{NP}$-hardness and inapproximability. Then, by utilizing Multiple Knapsack Problem (MKP) and Multi-Dimensional Knapsack Problem (MDKP), we proposed an efficient and effective MKP-MDKP-based algorithm. For cycle embedding, we proposed a Weighted Directed Auxiliary Graph (WDAG) to develop a polynomial-time algorithm to determine the least-resource-consuming embedding. Numerical results showed our customized algorithms can boost the acceptance ratio and revenue compared to generic embedding algorithms in the literature.
Virtualization facilitates heterogeneous cloud applications to share the same physical infrastructure with admirable flexibility, while resource efficiency and survivability are critical concerns for virtual network embedding (VNE). As more and more
It is well-known that cloud application performance critically depends on the network. Accordingly, new abstractions for cloud applications are proposed which extend the performance isolation guarantees to the network. The most common abstraction is
A virtual network (VN) contains a collection of virtual nodes and links assigned to underlying physical resources in a network substrate. VN migration is the process of remapping a VNs logical topology to a new set of physical resources to provide fa
Cloud computing has emerged as a powerful and elastic platform for internet service hosting, yet it also draws concerns of the unpredictable performance of cloud-based services due to network congestion. To offer predictable performance, the virtual
The SDN and NFV paradigms enable novel network services which can be realized and embedded in a flexible and rapid manner. For example, SDN can be used to flexibly steer traffic from a source to a destination through a sequence of virtualized middleb