ﻻ يوجد ملخص باللغة العربية
We study twisted $Spin^c$-manifolds over a paracompact Hausdorff space $X$ with a twisting $alpha: X to K(ZZ, 3)$. We introduce the topological index and the analytical index on the bordism group of $alpha$-twisted $Spin^c$-manifolds over $(X, alpha)$, taking values in topological twisted K-homology and analytical twisted K-homology respectively. The main result of this paper is to establish the equality between the topological index and the analytical index. We also define a notion of geometric twisted K-homology, whose cycles are geometric cycles of $(X, a)$ analogous to Baum-Douglass geometric cycles. As an application of our twisted index theorem, we discuss the twisted longitudinal index theorem for a foliated manifold $(X, F)$ with a twisting $alpha: X to K(ZZ, 3)$, which generalizes the Connes-Skandalis index theorem for foliations and the Atiyah-Singer families index theorem to twisted cases.
For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G
In this paper, we develop differential twisted K-theory and define a twisted Chern character on twisted K-theory which depends on a choice of connection and curving on the twisting gerbe. We also establish the general Riemann-Roch theorem in twisted
Let G be a compact Lie-group, X a compact G-CW-complex. We define equivariant geometric K-homology groups K^G_*(X), using an obvious equivariant version of the (M,E,f)-picture of Baum-Douglas for K-homology. We define explicit natural transformations
We define a $K$-theory for pointed right derivators and show that it agrees with Waldhausen $K$-theory in the case where the derivator arises from a good Waldhausen category. This $K$-theory is not invariant under general equivalences of derivators,
For every $infty$-category $mathscr{C}$, there is a homotopy $n$-category $mathrm{h}_n mathscr{C}$ and a canonical functor $gamma_n colon mathscr{C} to mathrm{h}_n mathscr{C}$. We study these higher homotopy categories, especially in connection with