ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric cycles, index theory and twisted K-homology

121   0   0.0 ( 0 )
 نشر من قبل Bai-Ling Wang
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Bai-Ling Wang




اسأل ChatGPT حول البحث

We study twisted $Spin^c$-manifolds over a paracompact Hausdorff space $X$ with a twisting $alpha: X to K(ZZ, 3)$. We introduce the topological index and the analytical index on the bordism group of $alpha$-twisted $Spin^c$-manifolds over $(X, alpha)$, taking values in topological twisted K-homology and analytical twisted K-homology respectively. The main result of this paper is to establish the equality between the topological index and the analytical index. We also define a notion of geometric twisted K-homology, whose cycles are geometric cycles of $(X, a)$ analogous to Baum-Douglass geometric cycles. As an application of our twisted index theorem, we discuss the twisted longitudinal index theorem for a foliated manifold $(X, F)$ with a twisting $alpha: X to K(ZZ, 3)$, which generalizes the Connes-Skandalis index theorem for foliations and the Atiyah-Singer families index theorem to twisted cases.



قيم البحث

اقرأ أيضاً

For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G on the irreducible representations of A. The twists are group 2-cocycles which encode the obstruction of lifting an irreducible representation of A to the subgroup of G which fixes the isomorphism class of the irreducible representation.
In this paper, we develop differential twisted K-theory and define a twisted Chern character on twisted K-theory which depends on a choice of connection and curving on the twisting gerbe. We also establish the general Riemann-Roch theorem in twisted K-theory and find some applications in the study of twisted K-theory of compact simple Lie groups.
195 - Paul Baum 2009
Let G be a compact Lie-group, X a compact G-CW-complex. We define equivariant geometric K-homology groups K^G_*(X), using an obvious equivariant version of the (M,E,f)-picture of Baum-Douglas for K-homology. We define explicit natural transformations to and from equivariant K-homology defined via KK-theory (the official equivariant K-homology groups) and show that these are isomorphism.
We define a $K$-theory for pointed right derivators and show that it agrees with Waldhausen $K$-theory in the case where the derivator arises from a good Waldhausen category. This $K$-theory is not invariant under general equivalences of derivators, but only under a stronger notion of equivalence that is defined by considering a simplicial enrichment of the category of derivators. We show that derivator $K$-theory, as originally defined, is the best approximation to Waldhausen $K$-theory by a functor that is invariant under equivalences of derivators.
129 - George Raptis 2019
For every $infty$-category $mathscr{C}$, there is a homotopy $n$-category $mathrm{h}_n mathscr{C}$ and a canonical functor $gamma_n colon mathscr{C} to mathrm{h}_n mathscr{C}$. We study these higher homotopy categories, especially in connection with the existence and preservation of (co)limits, by introducing a higher categorical notion of weak colimit. Based on the idea of the homotopy $n$-category, we introduce the notion of an $n$-derivator and study the main examples arising from $infty$-categories. Following the work of Maltsiniotis and Garkusha, we define $K$-theory for $infty$-derivators and prove that the canonical comparison map from the Waldhausen $K$-theory of $mathscr{C}$ to the $K$-theory of the associated $n$-derivator $mathbb{D}_{mathscr{C}}^{(n)}$ is $(n+1)$-connected. We also prove that this comparison map identifies derivator $K$-theory of $infty$-derivators in terms of a universal property. Moreover, using the canonical structure of higher weak pushouts in the homotopy $n$-category, we define also a $K$-theory space $K(mathrm{h}_n mathscr{C}, mathrm{can})$ associated to $mathrm{h}_n mathscr{C}$. We prove that the canonical comparison map from the Waldhausen $K$-theory of $mathscr{C}$ to $K(mathrm{h}_n mathscr{C}, mathrm{can})$ is $n$-connected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا