ﻻ يوجد ملخص باللغة العربية
Change detection (CD) in time series data is a critical problem as it reveal changes in the underlying generative processes driving the time series. Despite having received significant attention, one important unexplored aspect is how to efficiently utilize additional correlated information to improve the detection and the understanding of changepoints. We propose hierarchical quickest change detection (HQCD), a framework that formalizes the process of incorporating additional correlated sources for early changepoint detection. The core ideas behind HQCD are rooted in the theory of quickest detection and HQCD can be regarded as its novel generalization to a hierarchical setting. The sources are classified into targets and surrogates, and HQCD leverages this structure to systematically assimilate observed data to update changepoint statistics across layers. The decision on actual changepoints are provided by minimizing the delay while still maintaining reliability bounds. In addition, HQCD also uncovers interesting relations between changes at targets from changes across surrogates. We validate HQCD for reliability and performance against several state-of-the-art methods for both synthetic dataset (known changepoints) and several real-life examples (unknown changepoints). Our experiments indicate that we gain significant robustness without loss of detection delay through HQCD. Our real-life experiments also showcase the usefulness of the hierarchical setting by connecting the surrogate sources (such as Twitter chatter) to target sources (such as Employment related protests that ultimately lead to major uprisings).
The problem of quickest detection of a change in the mean of a sequence of independent observations is studied. The pre-change distribution is assumed to be stationary, while the post-change distributions are allowed to be non-stationary. The case wh
The Byzantine distributed quickest change detection (BDQCD) is studied, where a fusion center monitors the occurrence of an abrupt event through a bunch of distributed sensors that may be compromised. We first consider the binary hypothesis case wher
The problem of quickest change detection with communication rate constraints is studied. A network of wireless sensors with limited computation capability monitors the environment and sends observations to a fusion center via wireless channels. At an
Rapid detection of spatial events that propagate across a sensor network is of wide interest in many modern applications. In particular, in communications, radar, environmental monitoring, and biosurveillance, we may observe propagating fields or par
The knowledge of channel covariance matrices is of paramount importance to the estimation of instantaneous channels and the design of beamforming vectors in multi-antenna systems. In practice, an abrupt change in channel covariance matrices may occur