ﻻ يوجد ملخص باللغة العربية
The Byzantine distributed quickest change detection (BDQCD) is studied, where a fusion center monitors the occurrence of an abrupt event through a bunch of distributed sensors that may be compromised. We first consider the binary hypothesis case where there is only one post-change hypothesis and prove a novel converse to the first-order asymptotic detection delay in the large mean time to a false alarm regime. This converse is tight in that it coincides with the currently best achievability shown by Fellouris et al.; hence, the optimal asymptotic performance of binary BDQCD is characterized. An important implication of this result is that, even with compromised sensors, a 1-bit link between each sensor and the fusion center suffices to achieve asymptotic optimality. To accommodate multiple post-change hypotheses, we then formulate the multi-hypothesis BDQCD problem and again investigate the optimal first-order performance under different bandwidth constraints. A converse is first obtained by extending our converse from binary to multi-hypothesis BDQCD. Two families of stopping rules, namely the simultaneous $d$-th alarm and the multi-shot $d$-th alarm, are then proposed. Under sufficient link bandwidth, the simultaneous $d$-th alarm, with $d$ being set to the number of honest sensors, can achieve the asymptotic performance that coincides with the derived converse bound; hence, the asymptotically optimal performance of multi-hypothesis BDQCD is again characterized. Moreover, although being shown to be asymptotically optimal only for some special cases, the multi-shot $d$-th alarm is much more bandwidth-efficient and energy-efficient than the simultaneous $d$-th alarm. Built upon the above success in characterizing the asymptotic optimality of the BDQCD, a corresponding leader-follower Stackelberg game is formulated and its solution is found.
A phase detection sequence is a length-$n$ cyclic sequence, such that the location of any length-$k$ contiguous subsequence can be determined from a noisy observation of that subsequence. In this paper, we derive bounds on the minimal possible $k$ in
Opportunistic detection rules (ODRs) are variants of fixed-sample-size detection rules in which the statistician is allowed to make an early decision on the alternative hypothesis opportunistically based on the sequentially observed samples. From a s
The distributed source coding problem is considered when the sensors, or encoders, are under Byzantine attack; that is, an unknown group of sensors have been reprogrammed by a malicious intruder to undermine the reconstruction at the fusion center. T
We study a hypothesis testing problem in which data is compressed distributively and sent to a detector that seeks to decide between two possible distributions for the data. The aim is to characterize all achievable encoding rates and exponents of th
The distributed source coding problem is considered when the sensors, or encoders, are under Byzantine attack; that is, an unknown number of sensors have been reprogrammed by a malicious intruder to undermine the reconstruction at the fusion center.