ﻻ يوجد ملخص باللغة العربية
Anisotropic dipole-dipole interactions between ultracold dipolar fermions break the symmetry of the Fermi surface and thereby deform it. Here we demonstrate that such a Fermi surface deformation induces a topological phase transition -- so-called Lifshitz transition -- in the regime accessible to present-day experiments. We describe the impact of the Lifshitz transition on observable quantities such as the Fermi surface topology, the density-density correlation function, and the excitation spectrum of the system. The Lifshitz transition in ultracold atoms can be controlled by tuning the dipole orientation and -- in contrast to the transition studied in crystalline solids -- is completely interaction-driven.
We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients. This Hamiltonian describes the motion of char
Pairing between spinless fermions can generate Majorana fermion excitations that exhibit intriguing properties arising from non-local correlations. But simple models indicate that non-local correlation between Majorana fermions becomes unstable at no
Phase transitions and their associated crossovers are imprinted in the behavior of fluctuations. Motivated by recent experiments on ultracold atoms in optical lattices, we compute the thermodynamic density fluctuations $delta N^2$ of the two-dimensio
Quantum spin liquids (QSLs) define an exotic class of quantum ground states where spins are disordered down to zero temperature. We propose routes to QSLs in kagome optical lattices using applied flux. An optical flux lattice can be applied to induce
We investigate the behavior of identical dipolar fermions with aligned dipole moments in two-dimensional multilayers at zero temperature. We consider density instabilities that are driven by the attractive part of the dipolar interaction and, for the