ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-damping transmission of spin waves through YIG/Pt-based layered structures for spin-orbit-torque applications

83   0   0.0 ( 0 )
 نشر من قبل Alexander Serga
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that in YIG-Pt bi-layers, which are widely used in experiments on the spin transfer torque and spin Hall effects, the spin-wave amplitude significantly decreases in comparison to a single YIG film due to the excitation of microwave eddy currents in a Pt coat. By introducing a novel excitation geometry, where the Pt layer faces the ground plane of a microstrip line structure, we suppressed the excitation of the eddy currents in the Pt layer and, thus, achieved a large increase in the transmission of the Damon-Eshbach surface spin wave. At the same time, no visible influence of an external dc current applied to the Pt layer on the spin-wave amplitude in the YIG-Pt bi-layer was observed in our experiments with YIG films of micrometer thickness.



قيم البحث

اقرأ أيضاً

We experimentally investigate spin-orbit torque and spin pumping in Y$_3$Fe$_5$O$_{12}$(YIG)/Pt bilayers with ultrathin insertion layers at the interface. An insertion layer of Cu suppresses both spin-orbit torque and spin pumping, whereas an inserti on layer of Ni$_{80}$Fe$_{20}$ (permalloy, Py) enhances them, in a quantitatively consistent manner with the reciprocity of the two spin transmission processes. However, we observe a large enhancement of Gilbert damping with the insertion of Py that cannot be accounted for solely by spin pumping, suggesting significant spin-memory loss due to the interfacial magnetic layer. Our findings indicate that the magnetization at the YIG-metal interface strongly influences the transmission and depolarization of pure spin current.
We experimentally demonstrate the manipulation of magnetization relaxation utilizing a temperature difference across the thickness of an yttrium iron garnet/platinum (YIG/Pt) hetero-structure: the damping is either increased or decreased depending on the sign of the temperature gradient. This effect might be explained by a thermally-induced spin torque on the magnetization precession. The heat-induced variation of the damping is detected by microwave techniques as well as by a DC voltage caused by spin pumping into the adjacent Pt layer and the subsequent conversion into a charge current by the inverse spin Hall effect.
Efficient generation of spin-orbit torques (SOTs) is central for the exciting field of spin-orbitronics. Platinum, the archetypal spin Hall material, has the potential to be an outstanding provider for spin-orbit torques due to its giant spin Hall co nductivity, low resistivity, high stabilities, and the ability to be compatible with CMOS circuits. However, pure clean-limit Pt with low resistivity still provides a low damping-like spin-orbit torque efficiency, which limits its practical applications. The efficiency of spin-orbit torque in Pt-based magnetic heterostructures can be improved considerably by increasing the spin Hall ratio of Pt and spin transmissivity of the interfaces. Here we reviews recent advances in understanding the physics of spin current generation, interfacial spin transport, and the metrology of spin-orbit torques, and summarize progress towards the goal of Pt-based spin-orbit torque memories and logic that are fast, efficient, reliable, scalable, and non-volatile.
Spin Hall magnetoresistance (SMR) has been investigated in Pt/NiO/YIG structures in a wide range of temperature and NiO thickness. The SMR shows a negative sign below a temperature which increases with the NiO thickness. This is contrary to a convent ional SMR theory picture applied to Pt/YIG bilayer which always predicts a positive SMR. The negative SMR is found to persist even when NiO blocks the spin transmission between Pt and YIG, indicating it is governed by the spin current response of NiO layer. We explain the negative SMR by the NiO spin-flop coupled with YIG, which can be overridden at higher temperatures by positive SMR contribution from YIG. This highlights the role of magnetic structure in antiferromagnets for transport of pure spin current in multilayers.
Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven FMR technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, were analysed to determine the symmetries and r elative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the field-like torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا