ترغب بنشر مسار تعليمي؟ اضغط هنا

Heat-induced damping modification in YIG/Pt hetero-structures

267   0   0.0 ( 0 )
 نشر من قبل Matthias Benjamin Jungfleisch
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate the manipulation of magnetization relaxation utilizing a temperature difference across the thickness of an yttrium iron garnet/platinum (YIG/Pt) hetero-structure: the damping is either increased or decreased depending on the sign of the temperature gradient. This effect might be explained by a thermally-induced spin torque on the magnetization precession. The heat-induced variation of the damping is detected by microwave techniques as well as by a DC voltage caused by spin pumping into the adjacent Pt layer and the subsequent conversion into a charge current by the inverse spin Hall effect.



قيم البحث

اقرأ أيضاً

We show that in YIG-Pt bi-layers, which are widely used in experiments on the spin transfer torque and spin Hall effects, the spin-wave amplitude significantly decreases in comparison to a single YIG film due to the excitation of microwave eddy curre nts in a Pt coat. By introducing a novel excitation geometry, where the Pt layer faces the ground plane of a microstrip line structure, we suppressed the excitation of the eddy currents in the Pt layer and, thus, achieved a large increase in the transmission of the Damon-Eshbach surface spin wave. At the same time, no visible influence of an external dc current applied to the Pt layer on the spin-wave amplitude in the YIG-Pt bi-layer was observed in our experiments with YIG films of micrometer thickness.
We develop a self-consistent theory for current-induced spin wave excitations in normal metal-magnetic insulator bilayer systems, thereby establishing the relation between spin wave excitation and the experimentally controlled parameters. We fully ta ke into account the complex spin wave spectrum including dipolar interactions and surface anisotropy as well as the spin-pumping at the interface. Our results focus on the mode-dependent power close to the critical currents for spin wave excitation. The major findings are (a) the spin transfer torque can excite different spin-wave modes simultaneously; (b) spin pumping counterbalances spin-transfer torque and affects the surface modes more than the bulk modes; (c) spin pumping inhibits high frequency spin-wave modes, thereby redshifting the excitation spectrum. We can get agreement with experiments on yttrium iron garnet|platinum bilayers by postulating the existence of surface anisotropy modes.
Spin Hall magnetoresistance (SMR) has been investigated in Pt/NiO/YIG structures in a wide range of temperature and NiO thickness. The SMR shows a negative sign below a temperature which increases with the NiO thickness. This is contrary to a convent ional SMR theory picture applied to Pt/YIG bilayer which always predicts a positive SMR. The negative SMR is found to persist even when NiO blocks the spin transmission between Pt and YIG, indicating it is governed by the spin current response of NiO layer. We explain the negative SMR by the NiO spin-flop coupled with YIG, which can be overridden at higher temperatures by positive SMR contribution from YIG. This highlights the role of magnetic structure in antiferromagnets for transport of pure spin current in multilayers.
Boolean logic is the foundation of modern digital information processing. Recently, there has been a growing interest in phenomena based on pure spin currents, which allow to move from charge to spin based logic gates. We study a proof-of-principle l ogic device based on the ferrimagnetic insulator Yttrium Iron Garnet (YIG), with Pt strips acting as injectors and detectors for nonequilibrium magnons. We experimentally observe incoherent superposition of magnons generated by different injectors. This allows to implement a fully functional majority gate, enabling multiple logic operations (AND and OR) in one and the same device. Clocking frequencies of the order of several GHz and straightforward down-scaling make our device promising for applications.
Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applicati ons in microelectronics, such as data storage, memory and logic. However, it is difficult to achieve extensive degeneracy, especially in a two-dimensional system. Here, we showcase in-situ controllable geometric frustration with massive degeneracy in a two-dimensional flux quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure. The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling the switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin ice magnetic state through application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting particles using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which allows us to control new functionalities in other material systems, such as magnetic skyrmions, electrons/holes in two-dimensional materials and topological insulators, as well as colloids in soft materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا