ﻻ يوجد ملخص باللغة العربية
Deterministically integrating semiconductor quantum emitters with plasmonic nano-devices paves the way towards chip-scale integrable, true nanoscale quantum photonics technologies. For this purpose, stable and bright semiconductor emitters are needed, which moreover allow for CMOS-compatibility and optical activity in the telecommunication band. Here, we demonstrate strongly enhanced light-matter coupling of single near-surface ($<10,nm$) InAs quantum dots monolithically integrated into electromagnetic hot-spots of sub-wavelength sized metal nanoantennas. The antenna strongly enhances the emission intensity of single quantum dots by up to $sim16times$, an effect accompanied by an up to $3.4times$ Purcell-enhanced spontaneous emission rate. Moreover, the emission is strongly polarised along the antenna axis with degrees of linear polarisation up to $sim85,%$. The results unambiguously demonstrate the efficient coupling of individual quantum dots to state-of-the-art nanoantennas. Our work provides new perspectives for the realisation of quantum plasmonic sensors, step-changing photovoltaic devices, bright and ultrafast quantum light sources and efficent nano-lasers.
e study theoretically, the photoluminescence properties of a single quantum dot in a microcavity under incoherent excitation. We propose a microscopic quantum statistical approach providing a Lindblad (thus completely positive) description of pumping
We demonstrate non-perturbative coupling between a single self-assembled InGaAs quantum dot and an external fiber-mirror based microcavity. Our results extend the previous realizations of tunable microcavities while ensuring spatial and spectral over
We present the simulation, fabrication and optical characterization of plasmonic gold bowtie nanoantennas on a semiconducting GaAs substrate as geometrical parameters such as size, feed gap, height and polarization of the incident light are varied. T
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms. However, the high-yield integration of large numbers of individually addressable colloidal quantum
We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size dist