ترغب بنشر مسار تعليمي؟ اضغط هنا

Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity

148   0   0.0 ( 0 )
 نشر من قبل Javier Miguel-Sanchez
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate non-perturbative coupling between a single self-assembled InGaAs quantum dot and an external fiber-mirror based microcavity. Our results extend the previous realizations of tunable microcavities while ensuring spatial and spectral overlap between the cavity-mode and the emitter by simultaneously allowing for deterministic charge control of the quantum dots. Using resonant spectroscopy, we show that the coupled quantum dot cavity system is at the onset of strong coupling, with a cooperativity parameter of 2. Our results constitute a milestone towards the realization of a high efficiency solid-state spin-photon interface.



قيم البحث

اقرأ أيضاً

73 - E. Janitz , M. Ruf , Y. Fontana 2017
Fiber-based optical microcavities exhibit high quality factor and low mode volume resonances that make them attractive for coupling light to individual atoms or other microscopic systems. Moreover, their low mass should lead to excellent mechanical r esponse up to high frequencies, opening the possibility for high bandwidth stabilization of the cavity length. Here, we demonstrate a locking bandwidth of 44 kHz achieved using a simple, compact design that exploits these properties. Owing to the simplicity of fiber feedthroughs and lack of free-space alignment, this design is inherently compatible with vacuum and cryogenic environments. We measure the transfer function of the feedback circuit (closed-loop) and the cavity mount itself (open-loop), which, combined with simulations of the mechanical response of our device, provide insight into underlying limitations of the design as well as further improvements that can be made.
We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.
We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the pho tonic molecule, signifying achievement of the strong coupling regime. From the anti-crossing data, we estimate the contributions of both mode-coupling and intrinsic detuning to the total detuning between the super-modes. Finally, we also show signatures of off-resonant cavity-cavity interaction in the photonic molecule.
We demonstrate a fiber-integrated Fabry-Perot cavity formed by attaching a pair of dielectric metasurfaces to the ends of a hollow-core photonic-crystal fiber segment. The metasurfaces consist of perforated membranes designed as photonic-crystal slab s that act as planar mirrors but can potentially allow injection of gases through their holes into the hollow core of the fiber. We have so far observed cavities with finesse of ~11 and Q factors of ~$4.5 times 10^5$, but much higher values should be achievable with improved fabrication procedures. We expect this device to enable development of new fiber lasers, enhanced gas spectroscopy, and studies of fundamental light-matter interactions and nonlinear optics.
We present coherent reflection spectroscopy on a charge and DC Stark tunable quantum dot embedded in a high-quality and externally mode-matched microcavity. The addition of an exciton to a single-electron charged quantum dot forms a trion that intera cts with the microcavity just below strong coupling regime of cavity quantum electrodynamics. Such an integrated, monolithic system is a crucial step towards the implementation of scalable hybrid quantum information schemes that are based on an efficient interaction between a single photon and a confined electron spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا