ﻻ يوجد ملخص باللغة العربية
In this paper, we analyse a sub-class of two-dimensional homogeneous nearest neighbour (simple) random walk restricted on the lattice using the matrix geometric approach. In particular, we first present an alternative approach for the calculation of the stability condition, extending the result of Neuts drift conditions [30] and connecting it with the result of Fayolle et al. which is based on Lyapunov functions [13]. Furthermore, we consider the sub-class of random walks with equilibrium distributions given as series of product-forms and, for this class of random walks, we calculate the eigenvalues and the corresponding eigenvectors of the infinite matrix $mathbf{R}$ appearing in the matrix geometric approach. This result is obtained by connecting and extending three existing approaches available for such an analysis: the matrix geometric approach, the compensation approach and the boundary value problem method. In this paper, we also present the spectral properties of the infinite matrix $mathbf{R}$.
We consider dynamic random walks where the nearest neighbour jump rates are determined by an underlying supercritical contact process in equilibrium. This has previously been studied by den Hollander and dos Santos and den Hollander, dos Santos, Sido
It is well known that the behaviour of a branching process is completely described by the generating function of the offspring law and its fixed points. Branching random walks are a natural generalization of branching processes: a branching process c
The reproduction speed of a continuous-time branching random walk is proportional to a positive parameter $lambda$. There is a threshold for $lambda$, which is called $lambda_w$, that separates almost sure global extinction from global survival. Anal
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro
Lecture Notes. Minicourse given at the workshop Activated Random Walks, DLA, and related topics at IMeRA-Marseille, March 2015.