ترغب بنشر مسار تعليمي؟ اضغط هنا

A generating function approach to branching random walks

114   0   0.0 ( 0 )
 نشر من قبل Fabio Zucca
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that the behaviour of a branching process is completely described by the generating function of the offspring law and its fixed points. Branching random walks are a natural generalization of branching processes: a branching process can be seen as a one-dimensional branching random walk. We define a multidimensional generating function associated to a given branching random walk. The present paper investigates the similarities and the differences of the generating functions, their fixed points and the implications on the underlying stochastic process, between the one-dimensional (branching process) and the multidimensional case (branching random walk). In particular, we show that the generating function of a branching random walk can have uncountably many fixed points and a fixed point may not be an extinction probability, even in the irreducible case (extinction probabilities are always fixed points). Moreover, the generating function might not be a convex function. We also study how the behaviour of a branching random walk is affected by local modifications of the process. As a corollary, we describe a general procedure with which we can modify a continuous-time branching random walk which has a weak phase and turn it into a continuous-time branching random walk which has strong local survival for large or small values of the parameter and non-strong local survival for intermediate values of the parameter.



قيم البحث

اقرأ أيضاً

The reproduction speed of a continuous-time branching random walk is proportional to a positive parameter $lambda$. There is a threshold for $lambda$, which is called $lambda_w$, that separates almost sure global extinction from global survival. Anal ogously, there exists another threshold $lambda_s$ below which any site is visited almost surely a finite number of times (i.e.~local extinction) while above it there is a positive probability of visiting every site infinitely many times. The local critical parameter $lambda_s$ is completely understood and can be computed as a function of the reproduction rates. On the other hand, only for some classes of branching random walks it is known that the global critical parameter $lambda_w$ is the inverse of a certain function of the reproduction rates, which we denote by $K_w$. We provide here new sufficient conditions which guarantee that the global critical parameter equals $1/K_w$. This result extends previously known results for branching random walks on multigraphs and general branching random walks. We show that these sufficient conditions are satisfied by periodic tree-like branching random walks. We also discuss the critical parameter and the critical behaviour of continuous-time branching processes in varying environment. So far, only examples where $lambda_w=1/K_w$ were known; here we provide an example where $lambda_w>1/K_w$.
171 - Yueyun Hu , Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro ws as fast as its expectation with strictly positive probability. If,on the other hand, $d le 2$, or the environment is ``random enough, then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of replica overlap. We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.
We study survival of nearest-neighbour branching random walks in random environment (BRWRE) on ${mathbb Z}$. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and st rong local survival regimes coincide for BRWRE and that they can be characterized with the spectral radius of the first moment matrix of the process. These results are generalizations of the classification of BRWRE in recurrent and transient regimes. Our main result is a characterization of global survival that is given in terms of Lyapunov exponents of an infinite product of i.i.d. $2times 2$ random matrices.
Given a branching random walk on a graph, we consider two kinds of truncations: by inhibiting the reproduction outside a subset of vertices and by allowing at most $m$ particles per site. We investigate the convergence of weak and strong critical par ameters of these truncated branching random walks to the analogous parameters of the original branching random walk. As a corollary, we apply our results to the study of the strong critical parameter of a branching random walk restricted to the cluster of a Bernoulli bond percolation.
321 - Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase transition of this model in connection with directed polymers in random environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا