ﻻ يوجد ملخص باللغة العربية
Nonlinear stochastic differential equations provide one of the mathematical models yielding 1/f noise. However, the drawback of a single equation as a source of 1/f noise is the necessity of power-law steady-state probability density of the signal. In this paper we generalize this model and propose a system of two coupled nonlinear stochastic differential equations. The equations are derived from the scaling properties necessary for the achievement of 1/f noise. The first equation describes the changes of the signal, whereas the second equation represents a fluctuating rate of change. The proposed coupled stochastic differential equations allows us to obtain 1/f spectrum in a wide range of frequencies together with the almost arbitrary steady-state density of the signal.
Internal mechanism leading to the emergence of the widely occurring 1/f noise still remains an open issue. In this paper we investigate the distinction between internal time of the system and the physical time as a source of 1/f noise. After demonstr
Simple analytically solvable models are proposed exhibiting 1/f spectrum in wide range of frequency. The signals of the models consist of pulses (point process) which interevent times fluctuate about some average value, obeying an autoregressive proc
Noise of stochastic processes whose power spectrum scales at low frequencies, $f$, as $1/f$ appears in such diverse systems that it is considered universal. However, there have been a small number of instances from completely unrelated fields, e.g.,
We investigate the validity and accuracy of weak-noise (saddle-point or instanton) approximations for piecewise-smooth stochastic differential equations (SDEs), taking as an illustrative example a piecewise-constant SDE, which serves as a simple mode
Here we present a model for a small system combined with an explicit entropy bath that is comparably small. The dynamics of the model is defined by a simple matrix, M. Each row of M corresponds to a macrostate of the system, e.g. net alignment, while