ﻻ يوجد ملخص باللغة العربية
Noise of stochastic processes whose power spectrum scales at low frequencies, $f$, as $1/f$ appears in such diverse systems that it is considered universal. However, there have been a small number of instances from completely unrelated fields, e.g., the fluctuations of the human heartbeat or vortices in superconductors, in which power spectra have been observed to cross over from a $1/f$ to a non-$1/f$ behavior at even lower frequencies. Here, we show that such crossover must be universal, and can be accounted for by the memory of initial conditions and the relaxation processes present in any physical system. When the smallest frequency allowed by the experimental observation time, $omega_{obs}$, is larger than the smallest relaxation frequency, $Omega_{min}$, a $1/f$ power spectral density is obtained. Conversely, when $omega_{obs}<Omega_{min}$ we predict that the power spectrum of any stochastic process should exhibit a crossover from $1/f$ to a different, integrable functional form provided there is enough time for experimental observations. This crossover also provides a convenient tool to measure the lowest relaxation frequency of a physical system.
Simple analytically solvable models are proposed exhibiting 1/f spectrum in wide range of frequency. The signals of the models consist of pulses (point process) which interevent times fluctuate about some average value, obeying an autoregressive proc
The power spectrum of quantum dot fluorescence exhibits $1/f^beta$ noise, related to the intermittency of these nanosystems. As in other systems exhibiting $1/f$ noise, this power spectrum is not integrable at low frequencies, which appears to imply
Here we present a model for a small system combined with an explicit entropy bath that is comparably small. The dynamics of the model is defined by a simple matrix, M. Each row of M corresponds to a macrostate of the system, e.g. net alignment, while
Internal mechanism leading to the emergence of the widely occurring 1/f noise still remains an open issue. In this paper we investigate the distinction between internal time of the system and the physical time as a source of 1/f noise. After demonstr
By analyzing the dissipative dynamics of a tunable gap flux qubit, we extract both sides of its two-sided environmental flux noise spectral density over a range of frequencies around $2k_BT/h approx 1,rm{GHz}$, allowing for the observation of a class