ﻻ يوجد ملخص باللغة العربية
In Bipartite Correlation Clustering (BCC) we are given a complete bipartite graph $G$ with `+ and `- edges, and we seek a vertex clustering that maximizes the number of agreements: the number of all `+ edges within clusters plus all `- edges cut across clusters. BCC is known to be NP-hard. We present a novel approximation algorithm for $k$-BCC, a variant of BCC with an upper bound $k$ on the number of clusters. Our algorithm outputs a $k$-clustering that provably achieves a number of agreements within a multiplicative ${(1-delta)}$-factor from the optimal, for any desired accuracy $delta$. It relies on solving a combinatorially constrained bilinear maximization on the bi-adjacency matrix of $G$. It runs in time exponential in $k$ and $delta^{-1}$, but linear in the size of the input. Further, we show that, in the (unconstrained) BCC setting, an ${(1-delta)}$-approximation can be achieved by $O(delta^{-1})$ clusters regardless of the size of the graph. In turn, our $k$-BCC algorithm implies an Efficient PTAS for the BCC objective of maximizing agreements.
Recently, Hierarchical Clustering (HC) has been considered through the lens of optimization. In particular, two maximization objectives have been defined. Moseley and Wang defined the emph{Revenue} objective to handle similarity information given by
Clustering is a fundamental tool for analyzing large data sets. A rich body of work has been devoted to designing data-stream algorithms for the relevant optimization problems such as $k$-center, $k$-median, and $k$-means. Such algorithms need to be
Correlation clustering is a central topic in unsupervised learning, with many applications in ML and data mining. In correlation clustering, one receives as input a signed graph and the goal is to partition it to minimize the number of disagreements.
We investigate online scheduling with commitment for parallel identical machines. Our objective is to maximize the total processing time of accepted jobs. As soon as a job has been submitted, the commitment constraint forces us to decide immediately
We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planner