ﻻ يوجد ملخص باللغة العربية
We investigate online scheduling with commitment for parallel identical machines. Our objective is to maximize the total processing time of accepted jobs. As soon as a job has been submitted, the commitment constraint forces us to decide immediately whether we accept or reject the job. Upon acceptance of a job, we must complete it before its deadline $d$ that satisfies $d geq (1+epsilon)cdot p + r$, with $p$ and $r$ being the processing time and the submission time of the job, respectively while $epsilon>0$ is the slack of the system. Since the hard case typically arises for near-tight deadlines, we consider $varepsilonleq 1$. We use competitive analysis to evaluate our algorithms. Our first main contribution is a deterministic preemptive online algorithm with an almost tight competitive ratio on any number of machines. For a single machine, the competitive factor matches the optimal bound $frac{1+epsilon}{epsilon}$ of the greedy acceptance policy. Then the competitive ratio improves with an increasing number of machines and approaches $(1+epsilon)cdotln frac{1+epsilon}{epsilon}$ as the number of machines converges to infinity. This is an exponential improvement over the greedy acceptance policy for small $epsilon$. In the non-preemptive case, we present a deterministic algorithm on $m$ machines with a competitive ratio of $1+mcdot left(frac{1+epsilon}{epsilon}right)^{frac{1}{m}}$. This matches the optimal bound of $2+frac{1}{epsilon}$ of the greedy acceptance policy for a single machine while it again guarantees an exponential improvement over the greedy acceptance policy for small $epsilon$ and large $m$. In addition, we determine an almost tight lower bound that approaches $mcdot left(frac{1}{epsilon}right)^{frac{1}{m}}$ for large $m$ and small $epsilon$.
Resource allocation problems are a fundamental domain in which to evaluate the fairness properties of algorithms. The trade-offs between fairness and utilization have a long history in this domain. A recent line of work has considered fairness questi
We introduce a new model of computation: the online LOCAL model (OLOCAL). In this model, the adversary reveals the nodes of the input graph one by one, in the same way as in classical online algorithms, but for each new node the algorithm can also in
In Bipartite Correlation Clustering (BCC) we are given a complete bipartite graph $G$ with `+ and `- edges, and we seek a vertex clustering that maximizes the number of agreements: the number of all `+ edges within clusters plus all `- edges cut acro
The bin covering problem asks for covering a maximum number of bins with an online sequence of $n$ items of different sizes in the range $(0,1]$; a bin is said to be covered if it receives items of total size at least 1. We study this problem in the
In this paper we study three previously unstudied variants of the online Facility Location problem, considering an intrinsic scenario when the clients and facilities are not only allowed to arrive to the system, but they can also depart at any moment