ﻻ يوجد ملخص باللغة العربية
We analyze 24 binary radio pulsars in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) nine-year data set. We make fourteen significant measurements of Shapiro delay, including new detections in four pulsar-binary systems (PSRs J0613$-$0200, J2017+0603, J2302+4442, and J2317+1439), and derive estimates of the binary-component masses and orbital inclination for these MSP-binary systems. We find a wide range of binary pulsar masses, with values as low as $m_{rm p} = 1.18^{+0.10}_{-0.09}text{M}_{odot}$ for PSR J1918$-$0642 and as high as $m_{rm p} = 1.928^{+0.017}_{-0.017}text{M}_{odot}$ for PSR J1614$-$2230 (both 68.3% credibility). We make an improved measurement of the Shapiro timing delay in the PSR J1918$-$0642 and J2043+1711 systems, measuring the pulsar mass in the latter system to be $m_{rm p} = 1.41^{+0.21}_{-0.18}text{M}_{odot}$ (68.3% credibility) for the first time. We measure secular variations of one or more orbital elements in many systems, and use these measurements to further constrain our estimates of the pulsar and companion masses whenever possible. In particular, we used the observed Shapiro delay and periastron advance due to relativistic gravity in the PSR J1903+0327 system to derive a pulsar mass of $m_{rm p} = 1.65^{+0.02}_{-0.02}text{M}_{odot}$ (68.3% credibility). We discuss the implications that our mass measurements have on the overall neutron-star mass distribution, and on the mass/orbital-period correlation due to extended mass transfer.
We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) proje
We present a new analysis of the profile data from the 47 millisecond pulsars comprising the 12.5-year data set of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), which is presented in a parallel paper (Alam et al. 2021a;
We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-freq
We analyze dispersion measure (DM) variations of 37 millisecond pulsars in the 9-year NANOGrav data release and constrain the sources of these variations. Variations are significant for nearly all pulsars, with characteristic timescales comparable to
We search for extrasolar planets around millisecond pulsars using pulsar timing data and seek to determine the minimum detectable planetary masses as a function of orbital period. Using the 11-year data set from the North American Nanohertz Observato