ترغب بنشر مسار تعليمي؟ اضغط هنا

The NANOGrav 11-year Data Set: Constraints on Planetary Masses Around 45 Millisecond Pulsars

112   0   0.0 ( 0 )
 نشر من قبل Erica Behrens
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We search for extrasolar planets around millisecond pulsars using pulsar timing data and seek to determine the minimum detectable planetary masses as a function of orbital period. Using the 11-year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), we look for variations from our models of pulse arrival times due to the presence of exoplanets. No planets are detected around the millisecond pulsars in the NANOGrav 11-year data set, but taking into consideration the noise levels of each pulsar and the sampling rate of our observations, we develop limits that show we are sensitive to planetary masses as low as that of the moon. We analyzed potential planet periods, P, in the range 7 days < P < 2000 days, with somewhat smaller ranges for some binary pulsars. The planetary mass limit for our median-sensitivity pulsar within this period range is 1 M_moon (P / 100 days)^(-2/3).



قيم البحث

اقرأ أيضاً

We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-freq uency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, with six high--timing-precision pulsars observed weekly, and all were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and, if necessary, binary parameters, in addition to time-variable dispersion delays and parameters that quantify pulse-profile evolution with frequency. The new timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of large orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. Future papers will use these data to constrain or detect the signatures of gravitational-wave signals.
We present a new analysis of the profile data from the 47 millisecond pulsars comprising the 12.5-year data set of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), which is presented in a parallel paper (Alam et al. 2021a; NG12.5). Our reprocessing is performed using wideband timing methods, which use frequency-dependent template profiles, simultaneous time-of-arrival (TOA) and dispersion measure (DM) measurements from broadband observations, and novel analysis techniques. In particular, the wideband DM measurements are used to constrain the DM portion of the timing model. We compare the ensemble timing results to NG12.5 by examining the timing residuals, timing models, and noise model components. There is a remarkable level of agreement across all metrics considered. Our best-timed pulsars produce encouragingly similar results to those from NG12.5. In certain cases, such as high-DM pulsars with profile broadening, or sources that are weak and scintillating, wideband timing techniques prove to be beneficial, leading to more precise timing model parameters by 10-15%. The high-precision, multi-band measurements of several pulsars indicate frequency-dependent DMs. Compared to the narrowband analysis in NG12.5, the TOA volume is reduced by a factor of 33, which may ultimately facilitate computational speed-ups for complex pulsar timing array analyses. This first wideband pulsar timing data set is a stepping stone, and its consistent results with NG12.5 assure us that such data sets are appropriate for gravitational wave analyses.
We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released $11$-year dataset from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no significant evidence for a GWB, we pl ace constraints on a GWB from a population of supermassive black-hole binaries, cosmic strings, and a primordial GWB. For the first time, we find that the GWB upper limits and detection statistics are sensitive to the Solar System ephemeris (SSE) model used, and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first PTA constraints that are robust against SSE uncertainties. We thus place a $95%$ upper limit on the GW strain amplitude of $A_mathrm{GWB}<1.45times 10^{-15}$ at a frequency of $f=1$ yr$^{-1}$ for a fiducial $f^{-2/3}$ power-law spectrum, and with inter-pulsar correlations modeled. This is a factor of $sim 2$ improvement over the NANOGrav $9$-year limit, calculated using the same procedure. Previous PTA upper limits on the GWB will need revision in light of SSE systematic uncertainties. We use our constraints to characterize the combined influence on the GWB of the stellar mass-density in galactic cores, the eccentricity of SMBH binaries, and SMBH--galactic-bulge scaling relationships. We constrain cosmic-string tension using recent simulations, yielding an SSE-marginalized $95%$ upper limit on the cosmic string tension of $Gmu < 5.3times 10^{-11}$---a factor of $sim 2$ better than the published NANOGrav $9$-year constraints. Our SSE-marginalized $95%$ upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation Universe) is $Omega_mathrm{GWB}(f)h^2<3.4times10^{-10}$.
The mergers of supermassive black hole binaries (SMBHBs) promise to be incredible sources of gravitational waves (GWs). While the oscillatory part of the merger gravitational waveform will be outside the frequency sensitivity range of pulsar timing a rrays (PTAs), the non-oscillatory GW memory effect is detectable. Further, any burst of gravitational waves will produce GW memory, making memory a useful probe of unmodeled exotic sources and new physics. We searched the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11-year data set for GW memory. This dataset is sensitive to very low frequency GWs of $sim3$ to $400$ nHz (periods of $sim11$ yr $-$ $1$ mon). Finding no evidence for GWs, we placed limits on the strain amplitude of GW memory events during the observation period. We then used the strain upper limits to place limits on the rate of GW memory causing events. At a strain of $2.5times10^{-14}$, corresponding to the median upper limit as a function of source sky position, we set a limit on the rate of GW memory events at $<0.4$ yr$^{-1}$. That strain corresponds to a SMBHB merger with reduced mass of $eta M sim 2times10^{10}M_odot$ and inclination of $iota=pi/3$ at a distance of 1 Gpc. As a test of our analysis, we analyzed the NANOGrav 9-year data set as well. This analysis found an anomolous signal, which does not appear in the 11-year data set. This signal is not a GW, and its origin remains unknown.
We analyze 24 binary radio pulsars in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) nine-year data set. We make fourteen significant measurements of Shapiro delay, including new detections in four pulsar-binary systems ( PSRs J0613$-$0200, J2017+0603, J2302+4442, and J2317+1439), and derive estimates of the binary-component masses and orbital inclination for these MSP-binary systems. We find a wide range of binary pulsar masses, with values as low as $m_{rm p} = 1.18^{+0.10}_{-0.09}text{M}_{odot}$ for PSR J1918$-$0642 and as high as $m_{rm p} = 1.928^{+0.017}_{-0.017}text{M}_{odot}$ for PSR J1614$-$2230 (both 68.3% credibility). We make an improved measurement of the Shapiro timing delay in the PSR J1918$-$0642 and J2043+1711 systems, measuring the pulsar mass in the latter system to be $m_{rm p} = 1.41^{+0.21}_{-0.18}text{M}_{odot}$ (68.3% credibility) for the first time. We measure secular variations of one or more orbital elements in many systems, and use these measurements to further constrain our estimates of the pulsar and companion masses whenever possible. In particular, we used the observed Shapiro delay and periastron advance due to relativistic gravity in the PSR J1903+0327 system to derive a pulsar mass of $m_{rm p} = 1.65^{+0.02}_{-0.02}text{M}_{odot}$ (68.3% credibility). We discuss the implications that our mass measurements have on the overall neutron-star mass distribution, and on the mass/orbital-period correlation due to extended mass transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا