ﻻ يوجد ملخص باللغة العربية
Glass sound velocity shift was observed to be longarithmically temperature dependent in both relaxation and resonance regimes: $Delta c/c=mathcal{C}ln T$. It does not monotonically increase with temperature from $T=0$K, but to reach a maximum around a few Kelvin. Different from tunneling-two-level-system (TTLS) which gives the slope ratio between relaxation and resonance regimes $mathcal{C}^{rm rel }:mathcal{C}^{rm res }=-frac{1}{2}:1$, we develop a generic coupled block model to give $mathcal{C}^{rm rel }:mathcal{C}^{rm res }=-1:1$, which agrees well with the majority of experimental measurements. We use electric dipole-dipole interaction to carry out a similar behavior for glass dielectric constant shift $Delta epsilon/epsilon=mathcal{C}ln T$. The slope ratio between relaxation and resonance regimes is $mathcal{C}^{rm rel}:mathcal{C}^{rm res}=1:-1$ which agrees with dielectric measurements quite well. By developing a renormalization procedure for non-elastic stress-stress and dielectric susceptibilities, we prove these universalities essentially come from $1/r^3$ long range interactions, independent of materials microscopic properties.
In low-temperature glasses, the sound velocity changes as the logarithmic function of temperature below $10$K: $[c(T) - c(T_0)]/c(T_0) = mathcal{C}ln(T/T_0)$. With increasing temperature starting from $T=0$K, the sound velocity does not increase mono
We propose a microscopic model to study the avalanche problem of insulating glass deformed by external static uniform strain below $T=60$K. We use three-dimensional real-space renormalization procedure to carry out the glass mechanical susceptibility
The dynamic structure factor, S(Q,w), of vitreous silica, has been measured by inelastic X-ray scattering in the exchanged wavevector (Q) region Q=4-16.5 nm-1 and up to energies hw=115 meV in the Stokes side. The unprecedented statistical accuracy in
In this work we provide a thorough examination of the nonlinear dielectric properties of a succinonitrile-glutaronitrile mixture, representing one of the rare example of a plastic crystal with fragile glassy dynamics. The detected alteration of the c
The glassy dynamics of plastic-crystalline cyclo-octanol and ortho-carborane, where only the molecular reorientational degrees of freedom freeze without long-range order, is investigated by nonlinear dielectric spectroscopy. Marked differences to can