ﻻ يوجد ملخص باللغة العربية
We propose a microscopic model to study the avalanche problem of insulating glass deformed by external static uniform strain below $T=60$K. We use three-dimensional real-space renormalization procedure to carry out the glass mechanical susceptibility at macroscopic length scale. We prove the existence of irreversible stress drops in amorphous materials, corresponding to the steep positive-negative transitions in glass mechanical susceptibility. We also obtain the strain directions in which the glass system is brittle. The irreversible stress drops in glass essentially come from non-elastic stress-stress interaction which is generated by virtual phonon exchange process.
We study the glass and jamming transition of finite-dimensional models of simple liquids: hard- spheres, harmonic spheres and more generally bounded pair potentials that modelize frictionless spheres in interaction. At finite temperature, we study th
Glass sound velocity shift was observed to be longarithmically temperature dependent in both relaxation and resonance regimes: $Delta c/c=mathcal{C}ln T$. It does not monotonically increase with temperature from $T=0$K, but to reach a maximum around
We study the spectrum of the Hessian of the Sherrington-Kirkpatrick model near T=0, whose eigenvalues are the masses of the bare propagators in the expansion around the mean-field solution. In the limit $Tll 1$ two regions can be identified. The firs
The spin glass behavior near zero temperature is a complicated matter. To get an easier access to the spin glass order parameter $Q(x)$ and, at the same time, keep track of $Q_{ab}$, its matrix aspect, and hence of the Hessian controlling stability,
Mechanical deformation of amorphous solids can be described as consisting of an elastic part in which the stress increases linearly with strain, up to a yield point at which the solid either fractures or starts deforming plastically. It is well estab