ﻻ يوجد ملخص باللغة العربية
We investigate physics based design of colloidal quantum dot (CQD) solar cells using self-consistent computational modeling. The significance of band alignment engineering and optimized carrier mobility are quantitatively explored as a function of sub bandgap defect densities (N_t) in the bulk CQD. For $N_t leq 10^{15} cm^{-3}$, band alignment engineering near the interface of CQD and the metal contact could significantly improve open circuit voltage by suppressing the forward bias dark current. This effect could enhance cell efficiency up to ~37% for thinner $(< 1 mu m)$ CQD layers. For thicker $(> 1 mu m)$ CQD layer, the effect of band engineering is diminished as the forward bias dark current becomes diffusion-limited and less dependent on the interfacial band offsets. An optimal carrier mobility in CQD lies in the range ~ 10^{-2} cm^2/Vs - 10^0 cm^2/Vs and shows variation as a function of CQD layer thickness and the interfacial band offset. For $N_t approx 10^{14} cm^{-3}$, an optimally designed cell could provide ~20% efficiency under AM1.5G solar spectrum without employing advanced structural optimizations such as the nanostructured electrodes. These physical insights contribute to a better understanding of quantum dot solar cell design, allowing a step further towards a highly efficient and a low cost solar cell technology.
In this research, the effect of Magnesium Fluoride (MgF2) Anti-Reflection (AR) layer was investigated in quantum dot sensitized solar cells (QDSCs). MgF2 nanoparticles with the dominant size of 20 nm were grown by a thermal evaporation method and a t
The quantum well solar cell (QWSC) has been proposed as a flexible means to ensuring current matching for tandem cells. This paper explores the further advantage afforded by the indication that QWSCs operate in the radiative limit because radiative c
The spin-split indirect bandgap in hybrid-halide perovskites provides a momentum-space realisation of a photon-ratchet intermediate band. Excited electrons thermalise to recombination-protected Rashba pockets offset in momentum space, building up the
As the race towards higher efficiency for inorganic/organic hybrid perovskite solar cells (PSCs) is becoming highly competitive, a design scheme to maximize carrier transport towards higher power efficiency has been urgently demanded. Here, we unrave
The performance of kesterite thin-film solar cells is limited by a low open-circuit voltage due to defect-mediated electron-hole recombination. We calculate the non-radiative carrier-capture cross sections and Shockley-Read-Hall recombination coeffic