ﻻ يوجد ملخص باللغة العربية
We introduce and theoretically demonstrate a quantum metamaterial made of dense ultracold neutral atoms loaded into an inherently defect-free artificial crystal of light, immune to well-known critical chal- lenges inevitable in conventional solid-state platforms. We demonstrate an all-optical control on ultrafast time scales over the photonic topological transition of the isofrequency contour from an open to close topology at the same frequency. This atomic lattice quantum metamaterial enables a dynamic manipula- tion of the decay rate of a probe quantum emitter by more than an order of magnitude. This proposal may lead to practically lossless, tunable and topologically-reconfigurable quantum metamaterials, for single- or few-photon-level applications as varied as quantum sensing, quantum information processing, and quantum simulations using metamaterials.
We investigate surface plasmon amplification in a silver nanoparticle coupled to an externally driven three-level gain medium, and show that quantum coherence significantly enhances the generation of surface plasmons. Surface plasmon amplification by
We observe the quantum coherent dynamics of atomic spinor wavepackets in the double well potentials of a far-off-resonance optical lattice. With appropriate initial conditions the system Rabi oscillates between the left and right localized states of
We propose a nanophotonic platform for topological quantum optics. Our system is composed of a two-dimensional lattice of non-linear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guid
Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walks are proving to be effective simulators of such phenomena. Here we report the realization of a photonic q
Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here we consider the quantum physics of such devices. We show that the Casimir force of two con