ﻻ يوجد ملخص باللغة العربية
We propose a nanophotonic platform for topological quantum optics. Our system is composed of a two-dimensional lattice of non-linear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guided modes of the photonic crystal, and a uniform magnetic field gives rise to large topological band gaps and an almost completely flat topological band. Topological edge states arise on the boundaries of the system that are protected by the large gap against missing lattice sites and to the inhomogeneous broadening of emitters. These results pave the way for exploring topological many-body states in quantum optical systems.
The realization of an efficient quantum optical interface for multi-qubit systems is an outstanding challenge in science and engineering. We demonstrate a method for interfacing neutral atom arrays with optical photons. In our approach, atomic qubits
Recently, Grange et al. [Phys. Rev. Lett. 114, 193601 (2015)] showed the possibility of single photon generation with high indistinguishability from a quantum emitter, despite strong pure dephasing, by `funneling emission into a photonic cavity. Here
Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning thes
The periodic changes in physical and chemical properties of the chemical elements is caused by the periodic change of the ionization energies. The ionization energy of each element is constant and this manifests itself in the periodic table. However,
We performed an experimental study of coupled optical cavity arrays in a photonic crystal platform. We find that the coupling between the cavities is significantly larger than the fabrication-induced disorder in the cavity frequencies. Satisfying thi