ﻻ يوجد ملخص باللغة العربية
We study the dynamical evolution of the putative gas clouds G1 and G2 recently discovered in the Galactic center. Following earlier studies suggesting that these two clouds are part of a larger gas streamer, we combine their orbits into a single trajectory. Since the gas clouds experience a drag force from background gas, this trajectory is not exactly Keplerian. By assuming the G1 and G2 clouds trace this trajectory, we fit for the drag force they experience and thus extract information about the accretion flow at a distance of thousands of Schwarzschild radii from the black hole. This range of radii is important for theories of black hole accretion, but is currently unconstrained by observations. In this paper we extend our previous work by accounting for radial forces due to possible inflow or outflow of the background gas. Such radial forces drive precession in the orbital plane, allowing a slightly better fit to the G1 and G2 data. This precession delays the pericenter passage of G2 by 4-5 months relative to estimates derived from a Keplerian orbital fit; if it proves possible to identify the pericenter time observationally, this enables an immediate test of whether G1 and G2 are gas clouds part of a larger gas streamer. If G2 is indeed a gas cloud, its closest approach likely occurred in late summer 2014, after many of the observing campaigns monitoring G2s anticipated pericenter passage ended. We discuss how this affects interpretation of the G2 observations.
The massive black hole in our galactic center, Sgr A*, accretes only a small fraction of the gas available at its Bondi radius. The physical processes determining this accretion rate remain unknown, partly due to a lack of observational constraints o
The gas cloud G2 falling toward Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, is supposed to provide valuable information on the physics of accretion flows and the environment of the black hole. We observed Sgr
We have further followed the evolution of the orbital and physical properties of G2, the object currently falling toward the massive black hole in the Galactic Center on a near-radial orbit. New, very sensitive data were taken in April 2013 with NACO
The Event Horizon Telescope (EHT) will soon provide the first high-resolution images of the Galactic Centre supermassive black hole (SMBH) candidate Sagittarius A* (Sgr A*), enabling us to probe gravity in the strong-field regime. Besides studying th
Tidal disruption events (TDEs) are among the brightest transients in the optical, ultraviolet, and X-ray sky. These flares are set into motion when a star is torn apart by the tidal field of a massive black hole, triggering a chain of events which is