ﻻ يوجد ملخص باللغة العربية
The Event Horizon Telescope (EHT) will soon provide the first high-resolution images of the Galactic Centre supermassive black hole (SMBH) candidate Sagittarius A* (Sgr A*), enabling us to probe gravity in the strong-field regime. Besides studying the accretion process in extreme environments, the obtained data and reconstructed images could be used to investigate the underlying spacetime structure. In its current configuration, the EHT is able to distinguish between a rotating Kerr black hole and a horizon-less object like a boson star. Future developments can increase the ability of the EHT to tell different spacetimes apart. We investigate the capability of an advanced EHT concept, including an orbiting space antenna, to image and distinguish different spacetimes around Sgr A*. We use GRMHD simulations of accreting compact objects (Kerr and dilaton black holes, as well as boson stars) and compute their radiative signatures via general relativistic radiative transfer calculations. To facilitate comparison with upcoming and future EHT observations we produce realistic synthetic data including the source variability, diffractive and refractive scattering while incorporating the observing array, including a space antenna. From the generated synthetic observations we dynamically reconstructed black hole shadow images using regularised Maximum Entropy methods. We employ a genetic algorithm to optimise the orbit of the space antenna with respect to improved imaging capabilities and u-v-plane coverage of the combined array (ground array and space antenna and developed a new method to probe the source variability in Fourier space. The inclusion of an orbiting space antenna improves the capability of the EHT to distinguish the spin of Kerr black holes and dilaton black holes based on reconstructed radio images and complex visibilities.
The Space VLBI 2020: Science and Technology Futures meeting was the second in The Future of High-Resolution Radio Interferometry in Space series. The first meeting (2018 September 5--6; Noordwijk, the Netherlands) focused on the full range of science
Scalar-tensor theories of gravity generally violate the strong equivalence principle, namely compact objects have a suppressed coupling to the scalar force, causing them to fall slower. A black hole is the extreme example where such a coupling vanish
The massive black hole in our galactic center, Sgr A*, accretes only a small fraction of the gas available at its Bondi radius. The physical processes determining this accretion rate remain unknown, partly due to a lack of observational constraints o
While many aspects of general relativity have been tested, and general principles of quantum dynamics demand its quantization, there is no direct evidence for that. It has been argued that development of detectors sensitive to individual gravitons is
The Galactic Center black hole Sagittarius A* is a variable NIR source that exhibits bright flux excursions called flares. The low-flux density turnover of the flux distribution is below the sensitivity of current single-aperture telescopes. We use t