ﻻ يوجد ملخص باللغة العربية
We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF power requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10^(17) cm^(-3) nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed spin resonance linewidth over 10 times more narrow. The 200 kHz linewidth is most likely limited by dipolar broadening indicating even further reduction of the linewidth is desirable and possible.
As demonstrated in previous works, implantation with a MeV ion microbeam through masks with graded thickness allows the formation of conductive micro-channels in diamond which are embedded in the insulating matrix at controllable depths [P. Olivero e
We characterize single nitrogen-vacancy (NV) centers created by 10-keV N+ ion implantation into diamond via thin SiO$_2$ layers working as screening masks. Despite the relatively high acceleration energy compared with standard ones (< 5 keV) used to
We report a systematic study of the hyperfine interaction between the electron spin of a single nitrogen-vacancy (NV) defect in diamond and nearby $^{13}$C nuclear spins, by using pulsed electron spin resonance spectroscopy. We isolate a set of discr
We report on an ion implantation technique utilizing a screening mask made of SiO$_2$ to control both the depth profile and the dose. By appropriately selecting the thickness of the screening layer, this method fully suppresses the ion channeling, br
The advancement of quantum optical science and technology with solid-state emitters such as nitrogen-vacancy (NV) centers in diamond critically relies on the coherence of the emitters optical transitions. A widely employed strategy to create NV cente