ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of buried conductive micro-channels in single crystal diamond with MeV C and He implantation

184   0   0.0 ( 0 )
 نشر من قبل Paolo Olivero
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As demonstrated in previous works, implantation with a MeV ion microbeam through masks with graded thickness allows the formation of conductive micro-channels in diamond which are embedded in the insulating matrix at controllable depths [P. Olivero et al., Diamond Relat. Mater. 18 (5-8), 870-876 (2009)]. In the present work we report about the systematic electrical characterization of such micro-channels as a function of several implantation conditions, namely: ion species and energy, implantation fluence. The current-voltage (IV) characteristics of the buried channels were measured at room temperature with a two point probe station. Significant parameters such as the sheet resistance and the characteristic exponent (alpha) of the IV power-law trend were expressed as a function of damage density, with satisfactory compatibility between the results obtained in different implantation conditions.



قيم البحث

اقرأ أيضاً

We report on a novel method for the fabrication of three-dimensional buried graphitic micropaths in single crystal diamond with the employment of focused MeV ions. The use of implantation masks with graded thickness at the sub-micrometer scale allows the formation of conductive channels which are embedded in the insulating matrix at controllable depths. In particular, the modulation of the channels depth at their endpoints allows the surface contacting of the channel terminations with no need of further fabrication stages. In the present work we describe the sample masking, which includes the deposition of semi spherical gold contacts on the sample surface, followed by MeV ion implantation. Because of the significant difference between the densities of pristine and amorphous or graphitized diamond, the formation of buried channels has a relevant mechanical effect on the diamond structure, causing localized surface swelling, which has been measured both with interferometric profilometry and atomic force microscopy. The electrical properties of the buried channels are then measured with a two point probe station: clear evidence is given that only the terminal points of the channels are electrically connected with the surface, while the rest of the channels extends below the surface. IV measurements are employed also to qualitatively investigate the electrical properties of the channels as a function of implantation fluence and annealing.
In the present work we report about the investigation of the conduction mechanism of sp2 carbon micro-channels buried in single crystal diamond. The structures are fabricated with a novel technique which employs a MeV focused ion-beam to damage diamo nd in conjunction with variable thickness masks. This process changes significantly the structural proprieties of the target material, because the ion nuclear energy loss induces carbon conversion from sp3 to sp2 state mainly at the end of range of the ions (few micrometers). Furthermore, placing a mask with increasing thickness on the sample it is possible to modulate the channels depth at their endpoints, allowing their electrical connection with the surface. A single-crystal HPHT diamond sample was implanted with 1.8 MeV He+ ions at room temperature, the implantation fluence was set in the range 2.1x10^16 - 6.3x10^17 ions cm^-2, determining the formation of buried micro-channels at 3 um. After deposition of metallic contacts at the channels endpoints, the electrical characterization was performed measuring the I-V curves at variable temperatures in the 80-690 K range. The Variable Range Hopping model was used to fit the experimental data in the ohmic regime, allowing the estimation of characteristic parameters such as the density of localized states at the Fermi level. A value of 5.5x10^17 states cm-3 eV-1 was obtained, in satisfactory agreement with values previously reported in literature. The power-law dependence between current and voltage is consistent with the space charge limited mechanism at moderate electric fields.
We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF pow er requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10^(17) cm^(-3) nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed spin resonance linewidth over 10 times more narrow. The 200 kHz linewidth is most likely limited by dipolar broadening indicating even further reduction of the linewidth is desirable and possible.
222 - F. Bosia , N. Argiolas , M. Bazzan 2016
We present experimental results and numerical simulations to investigate the modification of structural-mechanical properties of ion-implanted single-crystal diamond. A phenomenological model is used to derive an analytical expression for the variati on of mass density and elastic properties as a function of damage density in the crystal. These relations are applied together with SRIM Monte Carlo simulations to set up Finite Element simulations for the determination of internal strains and surface deformation of MeV-ion-implanted diamond samples. The results are validated through comparison with high resolution X-ray diffraction and white-light interferometric profilometry experiments. The former are carried out on 180 keV B implanted diamond samples, to determine the induced structural variation, in terms of lattice spacing and disorder, whilst the latter are performed on 1.8 MeV He implanted diamond samples to measure surface swelling. The effect of thermal processing on the evolution of the structural-mechanical properties of damaged diamond is also evaluated by performing the same profilometric measurements after annealing at 1000 {deg}C, and modeling the obtained trends with a suitably modified analytical model. The results allow the development of a coherent model describing the effects of MeV-ion-induced damage on the structural-mechanical properties of single-crystal diamond. In particular, we suggest a more reliable method to determine the so-called diamond graphitization threshold for the considered implantation type.
With its host of outstanding material properties, single-crystal diamond is an attractive material for nanomechanical systems. Here, the mechanical resonance characteristics of freestanding, single-crystal diamond nanobeams fabricated by an angled-et ching methodology are reported. Resonance frequencies displayed evidence of significant compressive stress in doubly clamped diamond nanobeams, while cantilever resonance modes followed the expected inverse-length-squared trend. Q-factors on the order of 104 were recorded in high vacuum. Results presented here represent initial groundwork for future diamond-based nanomechanical systems which may be applied in both classical and quantum applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا