ﻻ يوجد ملخص باللغة العربية
Magneto transmission spectroscopy was employed to study the valley Zeeman effect in large-area monolayer MoS$_{2}$ and MoSe$_{2}$. The extracted values of the valley g-factors for both A- and B-exciton were found be similar with $g_v simeq -4.5$. The samples are expected to be strained due to the CVD growth on sapphire at high temperature ($700^circ$C). However, the estimated strain, which is maximum at low temperature, is only $simeq 0.2%$. Theoretical considerations suggest that the strain is too small to significantly influence the electronic properties. This is confirmed by the measured value of valley g-factor, and the measured temperature dependence of the band gap, which are almost identical for CVD and mechanically exfoliated MoS$_2$.
We study photoluminescence (PL) spectra and exciton dynamics of MoS$_2$ monolayer (ML) grown by the chemical vapor deposition technique. In addition to the usual direct A-exciton line we observe a low-energy line of bound excitons dominating the PL s
We present experimental and theoretical results on the high-quality single-layer MoS$_{2}$ which reveal the fine structure of charged excitons, i.e., trions. In the emission spectra we resolve and identify two trion peaks, T$_{1}$ and T$_{2}$, resemb
The results of magneto-optical spectroscopy investigations of excitons in a CVD grown monolayer of WSe2 encapsulated in hexagonal boron nitride are presented. The emission linewidth for the 1s state is of 4:7 meV, close to the narrowest emissions obs
The coupled spin and valley degrees of freedom in transition metal dichalcogenides (TMDs) are considered a promising platform for information processing. Here, we use a TMD heterostructure ${text{MoS}_{2}-text{MoSe}_{2}}$ to study optical pumping of
The valley dependent optical selection rules in recently discovered monolayer group-VI transition metal dichalcogenides (TMDs) make possible optical control of valley polarization, a crucial step towards valleytronic applications. However, in presenc