ﻻ يوجد ملخص باللغة العربية
The coupled spin and valley degrees of freedom in transition metal dichalcogenides (TMDs) are considered a promising platform for information processing. Here, we use a TMD heterostructure ${text{MoS}_{2}-text{MoSe}_{2}}$ to study optical pumping of spin/valley polarized carriers across the interface and to elucidate the mechanisms governing their subsequent relaxation. By applying time-resolved Kerr and reflectivity spectroscopies, we find that the photoexcited carriers conserve their spin for both tunneling directions across the interface. Following this, we measure dramatically different spin/valley depolarization rates for electrons and holes, $sim 30,{text{ns}}^{-1}$ and $< 1,{text{ns}}^{-1}$, respectively and show that this difference relates to the disparity in the spin-orbit splitting in conduction and valence bands of TMDs. Our work provides insights into the spin/valley dynamics of free carriers unaffected by complex excitonic processes and establishes TMD heterostructures as generators of spin currents in spin/valleytronic devices.
Valleytronics targets the exploitation of the additional degrees of freedom in materials where the energy of the carriers may assume several equal minimum values (valleys) at non-equivalent points of the reciprocal space. In single layers of transiti
Non-equilibrium dynamics of strongly correlated systems constitutes a fascinating problem of condensed matter physics with many open questions. Here we investigate the relaxation dynamics of Landau-quantized electron system into spin-valley polarized
Magneto transmission spectroscopy was employed to study the valley Zeeman effect in large-area monolayer MoS$_{2}$ and MoSe$_{2}$. The extracted values of the valley g-factors for both A- and B-exciton were found be similar with $g_v simeq -4.5$. The
The valley dependent optical selection rules in recently discovered monolayer group-VI transition metal dichalcogenides (TMDs) make possible optical control of valley polarization, a crucial step towards valleytronic applications. However, in presenc
Atomically thin semiconductors have dimensions that are commensurate with critical feature sizes of future optoelectronic devices defined using electron/ion beam lithography. Robustness of their emergent optical and valleytronic properties is essenti