ﻻ يوجد ملخص باللغة العربية
It has been suggested that marked point processes might be good candidates for the modelling of financial high-frequency data. A special class of point processes, Hawkes processes, has been the subject of various investigations in the financial community. In this paper, we propose to enhance a basic zero-intelligence order book simulator with arrival times of limit and market orders following mutually (asymmetrically) exciting Hawkes processes. Modelling is based on empirical observations on time intervals between orders that we verify on several markets (equity, bond futures, index futures). We show that this simple feature enables a much more realistic treatment of the bid-ask spread of the simulated order book.
In order-driven markets, limit-order book (LOB) resiliency is an important microscopic indicator of market quality when the order book is hit by a liquidity shock and plays an essential role in the design of optimal submission strategies of large ord
Bid-ask spread is taken as an important measure of the financial market liquidity. In this article, we study the dynamics of the spread return and the spread volatility of four liquid stocks in the Chinese stock market, including the memory effect an
Machine learning (especially reinforcement learning) methods for trading are increasingly reliant on simulation for agent training and testing. Furthermore, simulation is important for validation of hand-coded trading strategies and for testing hypot
The three-state agent-based 2D model of financial markets as proposed by Giulia Iori has been extended by introducing increasing trust in the correctly predicting agents, a more realistic consultation procedure as well as a formal validation mechanis
We model the behavior of three agent classes acting dynamically in a limit order book of a financial asset. Namely, we consider market makers (MM), high-frequency trading (HFT) firms, and institutional brokers (IB). Given a prior dynamic of the order