ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-tone pulse sequences and robust two-tone shaped pulses for three silicon spin qubits with always-on exchange

129   0   0.0 ( 0 )
 نشر من قبل David Kanaar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum computation requires high-fidelity single-qubit and two-qubit gates on a scalable platform. Silicon spin qubits are a promising platform toward realization of this goal. In this paper we show how to perform single-qubit and CZ gates in a linear chain of three spin qubits with always-on exchange coupling, which is relevant for certain dot- and donor-based silicon devices. We also show how to make the CZ gate robust against both charge noise and pulse length error using a two-tone pulse shaping method. The robust pulse maintains a fidelity of 99.99% at 3.5% fluctuations in exchange or pulse amplitude, which is an improvement over the uncorrected pulses where this fidelity can only be maintained for fluctuations in exchange up to 2% or up to 0.2% in amplitude.



قيم البحث

اقرأ أيضاً

We experimentally demonstrate single-spin magnetometry with multi-pulse sensing sequences. The use of multi-pulse sequences can greatly increase the sensing time per measurement shot, resulting in enhanced ac magnetic field sensitivity. We theoretica lly derive and experimentally verify the optimal number of sensing cycles, for which the effects of decoherence and increased sensing time are balanced. We perform these experiments for oscillating magnetic fields with fixed phase as well as for fields with random phase. Finally, by varying the phase and frequency of the ac magnetic field, we measure the full frequency-filtering characteristics of different multi-pulse schemes and discuss their use in magnetometry applications.
We introduce an always-on, exchange-only qubit made up of three localized semiconductor spins that offers a true sweet spot to fluctuations of the quantum dot energy levels. Both single- and two-qubit gate operations can be performed using only excha nge pulses while maintaining this sweet spot. We show how to interconvert this qubit to other three-spin encoded qubits as a new resource for quantum computation and communication.
Using micromagnets to enable electron spin manipulation in silicon qubits has emerged as a very popular method, enabling single-qubit gate fidelities larger than 99:9%. However, these micromagnets also apply stray magnetic field gradients onto the qu bits, making the spin states susceptible to electric field noise and limiting their coherence times. We describe here a magnet design that minimizes qubit dephasing, while allowing for fast qubit control and addressability. Specifically, we design and optimize magnet dimensions and position relative to the quantum dots, minimizing dephasing from magnetic field gradients. The micromagnet-induced dephasing rates with this design are up to 3-orders of magnitude lower than state-of-the-art implementations, allowing for long coherence times. This design is robust against fabrication errors, and can be combined with a wide variety of silicon qubit device geometries, thereby allowing exploration of coherence limiting factors and novel upscaling approaches.
Addressability of spin qubits in a silicon double quantum dot setup in the (1,1) charge configuration relies on having a large difference between the Zeeman splittings of the electrons. When the difference is not sufficiently large, the rotating wave approximation becomes inaccurate. We consider a device working in this regime, with always-on exchange coupling, and describe how a CZ gate and arbitrary one-qubit gates which are robust against charge noise can be implemented by smoothly pulsing the microwave source, while eliminating the crosstalk. We find that the most significant deviations from the rotating wave approximation, which are analogous to the Bloch-Siegert shift in a two-level system, can be compensated using local virtual gates.
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%. For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be st ored for nearly 1 second. However, manufacturing a scalable quantum processor with this method is considered challenging, because of the exponential sensitivity of the exchange interaction that mediates the coupling between the qubits. Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $^{31}$P donors implanted in silicon. The coupling strength, $J = 32.06 pm 0.06$ MHz, is measured spectroscopically with unprecedented precision. Since the coupling is weaker than the electron-nuclear hyperfine coupling $A approx 90$ MHz which detunes the two electrons, a native two-qubit Controlled-Rotation gate can be obtained via a simple electron spin resonance pulse. This scheme is insensitive to the precise value of $J$, which makes it suitable for the scale-up of donor-based quantum computers in silicon that exploit the Metal-Oxide-Semiconductor fabrication protocols commonly used in the classical electronics industry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا