ﻻ يوجد ملخص باللغة العربية
We consider Deep Inelastic Scattering (DIS) thought experiments in unitary Conformal Field Theories (CFTs). We explore the implications of the standard dispersion relations for the OPE data. We derive positivity constraints on the OPE coefficients of minimal-twist operators of even spin s geq 2. In the case of s=2, when the leading-twist operator is the stress tensor, we reproduce the Hofman-Maldacena bounds. For s>2 the bounds are new.
Supersymmetric theories with the same bosonic content but different fermions, aka emph{twins}, were thought to exist only for supergravity. Here we show that pairs of super conformal field theories, for example exotic $mathcal{N}=3$ and $mathcal{N}=1
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points a
An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFTs), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general a
Following on from earlier work relating modules of meromorphic bosonic conformal field theories to states representing solutions of certain simple equations inside the theories, we show, in the context of orbifold theories, that the intertwiners betw
Various aspects of warped conformal field theories (WCFTs) are studied including entanglement entropy on excited states, the Renyi entropy after a local quench, and out-of-time-order four-point functions. Assuming a large central charge and dominance