ﻻ يوجد ملخص باللغة العربية
An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFTs), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted and $Z_2$-twisted theories, $H(Lambda)$ and $tilde H(Lambda)$ respectively, which may be constructed from a suitable even Euclidean lattice $Lambda$. Similarly, one may construct lattices $Lambda_C$ and $tildeLambda_C$ by analogous constructions from a doubly-even binary code $C$. In the case when $C$ is self-dual, the corresponding lattices are also. Similarly, $H(Lambda)$ and $tilde H(Lambda)$ are self-dual if and only if $Lambda$ is. We show that $H(Lambda_C)$ has a natural ``triality structure, which induces an isomorphism $H(tildeLambda_C)equivtilde H(Lambda_C)$ and also a triality structure on $tilde H(tildeLambda_C)$. For $C$ the Golay code, $tildeLambda_C$ is the Leech lattice, and the triality on $tilde H(tildeLambda_C)$ is the symmetry which extends the natural action of (an extension of) Conways group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurmans construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFTs. We find that of the 48 theories $H(Lambda)$ and $tilde H(Lambda)$ with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code.
We investigate orbifold constructions of conformal field theories from lattices by no-fixed-point automorphisms (NFPAs) $Z_p$ for $p$ prime, $p>2$, concentrating on the case $p=3$. Explicit expressions are given for most of the relevant vertex operat
We consider representations of meromorphic bosonic chiral conformal field theories, and demonstrate that such a representation is completely specified by a state within the theory. The necessary and sufficient conditions upon this state are derived,
Following on from a general observation in an earlier paper, we consider the continuous symmetries of a certain class of conformal field theories constructed from lattices and their reflection-twisted orbifolds. It is shown that the naive expectation
Supersymmetric theories with the same bosonic content but different fermions, aka emph{twins}, were thought to exist only for supergravity. Here we show that pairs of super conformal field theories, for example exotic $mathcal{N}=3$ and $mathcal{N}=1
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points a