ﻻ يوجد ملخص باللغة العربية
For a connected graph, a {em minimum vertex separator} is a minimum set of vertices whose removal creates at least two connected components. The vertex connectivity of the graph refers to the size of the minimum vertex separator and a graph is $k$-vertex connected if its vertex connectivity is $k$, $kgeq 1$. Given a $k$-vertex connected graph $G$, the combinatorial problem {em vertex connectivity augmentation} asks for a minimum number of edges whose augmentation to $G$ makes the resulting graph $(k+1)$-vertex connected. In this paper, we initiate the study of $r$-vertex connectivity augmentation whose objective is to find a $(k+r)$-vertex connected graph by augmenting a minimum number of edges to a $k$-vertex connected graph, $r geq 1$. We shall investigate this question for the special case when $G$ is a tree and $r=2$. In particular, we present a polynomial-time algorithm to find a minimum set of edges whose augmentation to a tree makes it 3-vertex connected. Using lower bound arguments, we show that any tri-vertex connectivity augmentation of trees requires at least $lceil frac {2l_1+l_2}{2} rceil$ edges, where $l_1$ and $l_2$ denote the number of degree one vertices and degree two vertices, respectively. Further, we establish that our algorithm indeed augments this number, thus yielding an optimum algorithm.
A fringe subtree of a rooted tree is a subtree induced by one of the vertices and all its descendants. We consider the problem of estimating the number of distinct fringe subtrees in two types of random trees: simply generated trees and families of i
A fringe subtree of a rooted tree is a subtree consisting of one of the nodes and all its descendants. In this paper, we are specifically interested in the number of non-isomorphic trees that appear in the collection of all fringe subtrees of a binar
The modular decomposition of a symmetric map $deltacolon Xtimes X to Upsilon$ (or, equivalently, a set of symmetric binary relations, a 2-structure, or an edge-colored undirected graph) is a natural construction to capture key features of $delta$ in
Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. We first consider this prob
Minimum $k$-Section denotes the NP-hard problem to partition the vertex set of a graph into $k$ sets of sizes as equal as possible while minimizing the cut width, which is the number of edges between these sets. When $k$ is an input parameter and $n$