ﻻ يوجد ملخص باللغة العربية
We study, from the extrinsic point of view, the structure at infinity of open submanifolds isometrically immersed in the real space forms of constant sectional curvature $kappa leq 0$. We shall use the decay of the second fundamental form of the the so-called tamed immersions to obtain a description at infinity of the submanifold in the line of the structural results in the papers Internat. Math. Res. Notices 1994, no. 9, authored by R. E. Greene, P. Petersen and S. Zhou and Math. Ann. 2001, 321 (4), authored by A. Petrunin and W. Tuschmann. We shall obtain too an estimation from below of the number of its ends in terms of the volume growth of a special class of extrinsic domains, the extrinsic balls.
We show that a complete submanifold $M$ with tamed second fundamental form in a complete Riemannian manifold $N$ with sectional curvature $K_{N}leq kappa leq 0$ are proper, (compact if $N$ is compact). In addition, if $N$ is Hadamard then $M$ has fin
We provide a parametric construction in terms of minimal surfaces of the Euclidean submanifolds of codimension two and arbitrary dimension that attain equality in an inequality due to De Smet, Dillen, Verstraelen and Vrancken. The latter involves the
We obtain upper bounds for the isoperimetric quotients of extrinsic balls of submanifolds in ambient spaces which have a lower bound on their radial sectional curvatures. The submanifolds are themselves only assumed to have lower bounds on the radial
We study the volume of extrinsic balls and the capacity of extrinsic annuli in minimal submanifolds which are properly immersed with controlled radial sectional curvatures into an ambient manifold with a pole. The key results are concerned with the c
Let $fcolon M^{2n}tomathbb{R}^{2n+ell}$, $n geq 5$, denote a conformal immersion into Euclidean space with codimension $ell$ of a Kaehler manifold of complex dimension $n$ and free of flat points. For codimensions $ell=1,2$ we show that such a subman