ترغب بنشر مسار تعليمي؟ اضغط هنا

Ends, fundamental tones, and capacities of minimal submanifolds via extrinsic comparison theory

264   0   0.0 ( 0 )
 نشر من قبل Vicent Gimeno
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the volume of extrinsic balls and the capacity of extrinsic annuli in minimal submanifolds which are properly immersed with controlled radial sectional curvatures into an ambient manifold with a pole. The key results are concerned with the comparison of those volumes and capacities with the corresponding entities in a rotationally symmetric model manifold. Using the asymptotic behavior of the volumes and capacities we then obtain upper bounds for the number of ends as well as estimates for the fundamental tone of the submanifolds in question.



قيم البحث

اقرأ أيضاً

We study, from the extrinsic point of view, the structure at infinity of open submanifolds isometrically immersed in the real space forms of constant sectional curvature $kappa leq 0$. We shall use the decay of the second fundamental form of the the so-called tamed immersions to obtain a description at infinity of the submanifold in the line of the structural results in the papers Internat. Math. Res. Notices 1994, no. 9, authored by R. E. Greene, P. Petersen and S. Zhou and Math. Ann. 2001, 321 (4), authored by A. Petrunin and W. Tuschmann. We shall obtain too an estimation from below of the number of its ends in terms of the volume growth of a special class of extrinsic domains, the extrinsic balls.
We provide a parametric construction in terms of minimal surfaces of the Euclidean submanifolds of codimension two and arbitrary dimension that attain equality in an inequality due to De Smet, Dillen, Verstraelen and Vrancken. The latter involves the scalar curvature, the norm of the normal curvature tensor and the length of the mean curvature vector.
We obtain upper bounds for the isoperimetric quotients of extrinsic balls of submanifolds in ambient spaces which have a lower bound on their radial sectional curvatures. The submanifolds are themselves only assumed to have lower bounds on the radial part of the mean curvature vector field and on the radial part of the intrinsic unit normals at the boundaries of the extrinsic spheres, respectively. In the same vein we also establish lower bounds on the mean exit time for Brownian motion in the extrinsic balls. In those cases, where we may extend our analysis to hold all the way to infinity, we apply a capacity comparison technique to obtain a sufficient condition for the submanifolds to be parabolic, i.e. a condition which will guarantee that any Brownian particle, which is free to move around in the whole submanifold, is bound to eventually revisit any given neighborhood of its starting point with probability 1. The results of this paper are in a rough sense dual to similar results obtained previously by the present authors in complementary settings where we assume that the curvatures are bounded from above.
We show that a complete submanifold $M$ with tamed second fundamental form in a complete Riemannian manifold $N$ with sectional curvature $K_{N}leq kappa leq 0$ are proper, (compact if $N$ is compact). In addition, if $N$ is Hadamard then $M$ has fin ite topology. We also show that the fundamental tone is an obstruction for a Riemannian manifold to be realized as submanifold with tamed second fundamental form of a Hadamard manifold with sectional curvature bounded below.
Given a Hermitian line bundle $Lto M$ over a closed, oriented Riemannian manifold $M$, we study the asymptotic behavior, as $epsilonto 0$, of couples $(u_epsilon, abla_epsilon)$ critical for the rescalings begin{align*} &E_epsilon(u, abla)=int_MBig(| abla u|^2+epsilon^2|F_ abla|^2+frac{1}{4epsilon^2}(1-|u|^2)^2Big) end{align*} of the self-dual Yang-Mills-Higgs energy, where $u$ is a section of $L$ and $ abla$ is a Hermitian connection on $L$ with curvature $F_{ abla}$. Under the natural assumption $limsup_{epsilonto 0}E_epsilon(u_epsilon, abla_epsilon)<infty$, we show that the energy measures converge subsequentially to (the weight measure $mu$ of) a stationary integral $(n-2)$-varifold. Also, we show that the $(n-2)$-currents dual to the curvature forms converge subsequentially to $2piGamma$, for an integral $(n-2)$-cycle $Gamma$ with $|Gamma|lemu$. Finally, we provide a variational construction of nontrivial critical points $(u_epsilon, abla_epsilon)$ on arbitrary line bundles, satisfying a uniform energy bound. As a byproduct, we obtain a PDE proof, in codimension two, of Almgrens existence result of (nontrivial) stationary integral $(n-2)$-varifolds in an arbitrary closed Riemannian manifold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا