ﻻ يوجد ملخص باللغة العربية
We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN which uses around 2K bounding boxes generated with a proposal technique. This strategy makes detection faster by removing the object proposal stage as well as reducing the number of boxes to be processed.
For reliable environment perception, the use of temporal information is essential in some situations. Especially for object detection, sometimes a situation can only be understood in the right perspective through temporal information. Since image-bas
The local feature detector and descriptor are essential in many computer vision tasks, such as SLAM and 3D reconstruction. In this paper, we introduce two separate CNNs, lightweight SobelNet and DesNet, to detect key points and to compute dense local
In this paper, we propose a binarized neural network learning method called BiDet for efficient object detection. Conventional network binarization methods directly quantize the weights and activations in one-stage or two-stage detectors with constra
Many previous methods have demonstrated the importance of considering semantically relevant objects for carrying out video-based human activity recognition, yet none of the methods have harvested the power of large text corpora to relate the objects
360{deg} images are usually represented in either equirectangular projection (ERP) or multiple perspective projections. Different from the flat 2D images, the detection task is challenging for 360{deg} images due to the distortion of ERP and the inef