ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal Feature Networks for CNN based Object Detection

87   0   0.0 ( 0 )
 نشر من قبل Michael Weber
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For reliable environment perception, the use of temporal information is essential in some situations. Especially for object detection, sometimes a situation can only be understood in the right perspective through temporal information. Since image-based object detectors are currently based almost exclusively on CNN architectures, an extension of their feature extraction with temporal features seems promising. Within this work we investigate different architectural components for a CNN-based temporal information extraction. We present a Temporal Feature Network which is based on the insights gained from our architectural investigations. This network is trained from scratch without any ImageNet information based pre-training as these images are not available with temporal information. The object detector based on this network is evaluated against the non-temporal counterpart as baseline and achieves competitive results in an evaluation on the KITTI object detection dataset.



قيم البحث

اقرأ أيضاً

158 - Yiming Cui , Liqi Yan , Zhiwen Cao 2021
Video objection detection is a challenging task because isolated video frames may encounter appearance deterioration, which introduces great confusion for detection. One of the popular solutions is to exploit the temporal information and enhance per- frame representation through aggregating features from neighboring frames. Despite achieving improvements in detection, existing methods focus on the selection of higher-level video frames for aggregation rather than modeling lower-level temporal relations to increase the feature representation. To address this limitation, we propose a novel solution named TF-Blender,which includes three modules: 1) Temporal relation mod-els the relations between the current frame and its neighboring frames to preserve spatial information. 2). Feature adjustment enriches the representation of every neigh-boring feature map; 3) Feature blender combines outputs from the first two modules and produces stronger features for the later detection tasks. For its simplicity, TF-Blender can be effortlessly plugged into any detection network to improve detection behavior. Extensive evaluations on ImageNet VID and YouTube-VIS benchmarks indicate the performance guarantees of using TF-Blender on recent state-of-the-art methods.
71 - Wenqing Chu , Deng Cai 2016
Object detection is one of the most active areas in computer vision, which has made significant improvement in recent years. Current state-of-the-art object detection methods mostly adhere to the framework of regions with convolutional neural network (R-CNN) and only use local appearance features inside object bounding boxes. Since these approaches ignore the contextual information around the object proposals, the outcome of these detectors may generate a semantically incoherent interpretation of the input image. In this paper, we propose an ensemble object detection system which incorporates the local appearance, the contextual information in term of relationships among objects and the global scene based contextual feature generated by a convolutional neural network. The system is formulated as a fully connected conditional random field (CRF) defined on object proposals and the contextual constraints among object proposals are modeled as edges naturally. Furthermore, a fast mean field approximation method is utilized to inference in this CRF model efficiently. The experimental results demonstrate that our approach achieves a higher mean average precision (mAP) on PASCAL VOC 2007 datasets compared to the baseline algorithm Faster R-CNN.
Current state-of-the-art two-stage detectors generate oriented proposals through time-consuming schemes. This diminishes the detectors speed, thereby becoming the computational bottleneck in advanced oriented object detection systems. This work propo ses an effective and simple oriented object detection framework, termed Oriented R-CNN, which is a general two-stage oriented detector with promising accuracy and efficiency. To be specific, in the first stage, we propose an oriented Region Proposal Network (oriented RPN) that directly generates high-quality oriented proposals in a nearly cost-free manner. The second stage is oriented R-CNN head for refining oriented Regions of Interest (oriented RoIs) and recognizing them. Without tricks, oriented R-CNN with ResNet50 achieves state-of-the-art detection accuracy on two commonly-used datasets for oriented object detection including DOTA (75.87% mAP) and HRSC2016 (96.50% mAP), while having a speed of 15.1 FPS with the image size of 1024$times$1024 on a single RTX 2080Ti. We hope our work could inspire rethinking the design of oriented detectors and serve as a baseline for oriented object detection. Code is available at https://github.com/jbwang1997/OBBDetection.
Recent advances on 3D object detection heavily rely on how the 3D data are represented, emph{i.e.}, voxel-based or point-based representation. Many existing high performance 3D detectors are point-based because this structure can better retain precis e point positions. Nevertheless, point-level features lead to high computation overheads due to unordered storage. In contrast, the voxel-based structure is better suited for feature extraction but often yields lower accuracy because the input data are divided into grids. In this paper, we take a slightly different viewpoint -- we find that precise positioning of raw points is not essential for high performance 3D object detection and that the coarse voxel granularity can also offer sufficient detection accuracy. Bearing this view in mind, we devise a simple but effective voxel-based framework, named Voxel R-CNN. By taking full advantage of voxel features in a two stage approach, our method achieves comparable detection accuracy with state-of-the-art point-based models, but at a fraction of the computation cost. Voxel R-CNN consists of a 3D backbone network, a 2D bird-eye-view (BEV) Region Proposal Network and a detect head. A voxel RoI pooling is devised to extract RoI features directly from voxel features for further refinement. Extensive experiments are conducted on the widely used KITTI Dataset and the more recent Waymo Open Dataset. Our results show that compared to existing voxel-based methods, Voxel R-CNN delivers a higher detection accuracy while maintaining a real-time frame processing rate, emph{i.e}., at a speed of 25 FPS on an NVIDIA RTX 2080 Ti GPU. The code is available at url{https://github.com/djiajunustc/Voxel-R-CNN}.
318 - Han Qiu , Yuchen Ma , Zeming Li 2020
Dense object detectors rely on the sliding-window paradigm that predicts the object over a regular grid of image. Meanwhile, the feature maps on the point of the grid are adopted to generate the bounding box predictions. The point feature is convenie nt to use but may lack the explicit border information for accurate localization. In this paper, We propose a simple and efficient operator called Border-Align to extract border features from the extreme point of the border to enhance the point feature. Based on the BorderAlign, we design a novel detection architecture called BorderDet, which explicitly exploits the border information for stronger classification and more accurate localization. With ResNet-50 backbone, our method improves single-stage detector FCOS by 2.8 AP gains (38.6 v.s. 41.4). With the ResNeXt-101-DCN backbone, our BorderDet obtains 50.3 AP, outperforming the existing state-of-the-art approaches. The code is available at (https://github.com/Megvii-BaseDetection/BorderDet).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا